• Photonics Research
  • Vol. 7, Issue 10, 1182 (2019)
Xintong Xu1,2, Jiaqi Chen2, Wentao Shi2, Dalin Sun2..., Shaowen Chu2, Lang Sun2, Wenfei Zhang2, Yanping Chen3, Jianpang Zhai3, Shuangchen Ruan1,2,* and Zikang Tang4|Show fewer author(s)
Author Affiliations
  • 1Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
  • 2Shenzhen Key Laboratory of Laser Engineering, Shenzhen University, Shenzhen 518060, China
  • 3College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
  • 4Institute of Applied Physics & Materials Engineering, Faculty of Science and Technology, University of Macau, Macau, China
  • show less
    DOI: 10.1364/PRJ.7.001182 Cite this Article Set citation alerts
    Xintong Xu, Jiaqi Chen, Wentao Shi, Dalin Sun, Shaowen Chu, Lang Sun, Wenfei Zhang, Yanping Chen, Jianpang Zhai, Shuangchen Ruan, Zikang Tang, "Zeolite templated carbon nanodots for broadband ultrafast pulsed fiber laser generation," Photonics Res. 7, 1182 (2019) Copy Citation Text show less
    References

    [1] X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 126, 12736-12737(2004).

    [2] Y. Xiong, J. Schneider, E. V. Ushakova, A. L. Rogach. Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today, 23, 124-139(2018).

    [3] N. Basu, D. Mandal. Time-resolved photoluminescence of pH-sensitive carbon dots. Carbon, 144, 500-508(2019).

    [4] C. J. Reckmeier, J. Schneider, A. S. Susha, A. L. Rogach. Luminescent colloidal carbon dots: optical properties and effects of doping. Opt. Express, 24, A312-A340(2016).

    [5] L. Xiao, H. Sun. Novel properties and applications of carbon nanodots. Nano Scale Horiz., 3, 565-597(2018).

    [6] X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, P. Chen. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 11, 1620-1636(2015).

    [7] I. Milenkovic, M. Algarra, C. Alcoholado, M. Cifuentes, J. M. Lázaro-Martínez, E. Rodríguez-Castellón. Fingerprint imaging using N-doped carbon dots. Carbon, 144, 791-797(2019).

    [8] X. Gao, C. Du, Z. Zhuang, W. Chen. Carbon quantum dot-based nanoprobes for metal ion detection. J. Mater. Chem. C, 4, 6927-6945(2016).

    [9] G. A. M. Hutton, B. C. M. Martindale, E. Reisner. Carbon dots as photosensitisers for solar-driven catalysis. Chem. Soc. Rev., 46, 6111-6123(2017).

    [10] M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, S. Tao. Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications. Nano Today, 19, 201-218(2018).

    [11] J. Li, B. Wang, H. Zhang, J. Yu. Carbon dots-in-matrix boosting intriguing luminescence properties and applications. Small, 15, 1805504(2019).

    [12] B. Kong, J. Tang, Y. Zhang, T. Jiang, X. Gong, C. Peng. Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nat. Chem., 8, 171-178(2016).

    [13] Y. Mu, N. Wang, Z. Sun, J. Wang, J. Li, J. Yu. Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence. Chem. Sci., 7, 3564-3568(2016).

    [14] Y. Mu, H. Shi, Y. Wang, H. Ding, J. Li. CNDs@zeolite: new room-temperature phosphorescent materials derived by pyrolysis of organo-templated zeolites. J. Mater. Chem. C, 5, 10894-10899(2017).

    [15] H. G. Baldovi, S. Valencia, M. Alvaro, A. M. Asiri, H. Garcia. Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite. Nanoscale, 7, 1744-1752(2015).

    [16] Y. Wang, Y. Li, Y. Yan, J. Xu, B. Guan, Q. Wang. Luminescent carbon dots in a new magnesium aluminophosphate zeolite. Chem. Commun., 49, 9006-9008(2013).

    [17] B. Wang, Y. Mu, H. Yin, Z. Yang, Y. Shi, J. Li. Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots. Nanoscale, 10, 10650-10656(2018).

    [18] J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang, J. Li. Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv., 3, e1603171(2017).

    [19] B. Wang, Y. Mu, H. Zhang, H. Shi, G. Chen, Y. Yu. Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks. ACS Central. Sci., 5, 349-356(2019).

    [20] S. Liu, Q. Wang, K. Wang, Y. Yao, H. Zhang, T. Ren, Z. Yin, F. Du, B. Zhang, J. He. Two-photon saturable absorption properties and laser Q-switch application of carbon quantum dots. Opt. Lett., 42, 3972-3975(2017).

    [21] F. W. Wise, A. Chong, W. H. Renninger. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser. Photon. Rev., 2, 58-73(2008).

    [22] K. Ursula. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [23] W. Fu, L. G. Wright, P. Sidorenko, S. Backus, F. W. Wise. Several new directions for ultrafast fiber lasers. Opt. Express, 26, 9432-9463(2018).

    [24] Z. C. Luo, A. P. Luo, W. C. Xu. Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter. IEEE Photon. J., 3, 64-70(2011).

    [25] F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol., 3, 738-742(2008).

    [26] J. C. Chiu, C. M. Chang, B. Z. Hsieh, S. C. Lin, C. Y. Yeh, G. R. Lin. Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber. Opt. Express, 19, 4036-4041(2011).

    [27] J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, C. K. Lee. Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse. Opt. Express, 18, 3592-3600(2010).

    [28] L. Hou, H. Guo, Y. Wang, J. Sun, Q. Lin, Y. Bai. Sub-200 femtosecond dispersion-managed soliton ytterbium doped fiber laser based on carbon nanotubes saturable absorber. Opt. Express, 26, 9063-9070(2018).

    [29] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [30] D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari. Sub 200 fs pulse generation from a graphene mode locked fiber laser. Appl. Phys. Lett., 97, 203106(2010).

    [31] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803-810(2010).

    [32] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari. Graphene photonics and optoelectronics. Nat. Photonics, 4, 611-622(2010).

    [33] H. R. Chen, C. Y. Tsai, H. M. Cheng, K. H. Lin, W. F. Hsieh. Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers. Opt. Express, 22, 12880-12889(2014).

    [34] J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek. Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers. Photon. Res., 3, 119-124(2015).

    [35] Z. Cheng, H. Li, H. Shi, J. Ren, Q. H. Yang, P. Wang. Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser. Opt. Express, 23, 7000-7006(2015).

    [36] Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett., 38, 5212-5215(2013).

    [37] Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, X. Fang. Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3. Opt. Express, 22, 24055-24061(2014).

    [38] M. Jung, J. Lee, J. Koo, J. Park, Y. W. Song, K. Lee. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator. Opt. Express, 22, 7865-7874(2014).

    [39] H. Liu, X. W. Zheng, M. Liu, N. Zhao, A. P. Luo, Z. C. Luo. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express, 22, 6868-6873(2014).

    [40] K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, J. Hou. Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2  μm. Photon. Res., 3, 72-76(2015).

    [41] M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater., 7, 1800224(2019).

    [42] W. Liu, L. Pang, H. Han, K. Bi, M. Lei, Z. Wei. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale, 9, 5806-5811(2017).

    [43] W. Liu, L. Pang, H. Han, M. Liu, M. Lei, S. Fang. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Opt. Express, 25, 2950-2959(2017).

    [44] R. Lü, Y. Wang, J. Wang, W. Ren, L. Li, S. Liu. Soliton and bound-state soliton mode-locked fiber laser based on a MoS2/fluorine mica Langmuir-Blodgett film saturable absorber. Photon. Res., 7, 431-436(2019).

    [45] X. Guo, A. Navrotsky. Hydration dynamics in zeolite A—an X-ray diffraction and infrared spectroscopic study. Micropor. Mesopor. Mater., 268, 197-201(2018).

    [46] C. Chen, D. Zhai, L. Dong, Y. Wang, J. Zhang, Y. Liu. Organic anions facilitate in situ synthesis of mesoporous LTA zeolites. Chem. Mater., 31, 1528-1536(2019).

    [47] S. N. Baker, G. A. Baker. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed., 49, 6726-6744(2010).

    [48] D. Pan, J. Zhang, Z. Li, M. Wu. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater., 22, 734-738(2010).

    [49] S. Zhang, L. Sui, H. Dong, W. He, L. Dong, L. Yu. High-performance supercapacitor of graphene quantum dots with uniform sizes. ACS Appl. Mater. Interface, 10, 12983-12991(2018).

    [50] X. Meng, Q. Chang, C. Xue, J. Yang, S. Hu. Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties. Chem. Commun., 53, 3074-3077(2017).

    [51] F. Wang, Y. Jing, Z. Kang, L. Zhou, Z. Li, M. Liu. Mesoporous carbon nanospheres as broadband saturable absorbers for pulsed laser generation. Adv. Opt. Mater., 6, 1800606(2018).

    [52] K. H. Fong, S. Y. Set, R. Grange, A. Schlatter, K. Kikuchi, C. S. Goh. Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film. Opt. Lett., 32, 38-40(2007).

    [53] F. X. Kartner, I. D. Jung, U. Keller. Soliton mode-locking with saturable absorbers. IEEE J. Sel. Top. Quantum Electron., 2, 540-556(1996).

    [54] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics, 6, 84-92(2012).

    [55] L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, K. P. Loh. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Appl. Phys. Lett., 35, 3622-3624(2010).

    [56] P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu. Two dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces, 9, 12759-12765(2017).

    [57] Z. Chen, H. Wang, Y. Wang, R. Lv, X. Yang, J. Wang. Improved optical damage threshold graphene oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers. Carbon, 144, 737-744(2019).

    [58] Y. Zhao, P. Guo, X. Li, Z. Jin. Ultrafast photonics application of graphdiyne in the optical communication region. Carbon, 149, 336-341(2019).

    Xintong Xu, Jiaqi Chen, Wentao Shi, Dalin Sun, Shaowen Chu, Lang Sun, Wenfei Zhang, Yanping Chen, Jianpang Zhai, Shuangchen Ruan, Zikang Tang, "Zeolite templated carbon nanodots for broadband ultrafast pulsed fiber laser generation," Photonics Res. 7, 1182 (2019)
    Download Citation