• Advanced Photonics
  • Vol. 7, Issue 1, 016009 (2025)
Xinrui Lei1,2,†, Aiping Yang1,3, Xusheng Chen1, Luping Du1,*..., Peng Shi1, Qiwen Zhan2,* and Xiaocong Yuan1,4,*|Show fewer author(s)
Author Affiliations
  • 1Shenzhen University, Institute of Microscale Optoelectronics and State Key Laboratory of Radio Frequency Heterogeneous Integration, Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen, China
  • 2University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Shanghai, China
  • 3Dongguan University of Technology, Research Institute of Interdisciplinary Sciences and School of Materials Science and Engineering, Dongguan, China
  • 4Research Centre for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, China
  • show less
    DOI: 10.1117/1.AP.7.1.016009 Cite this Article Set citation alerts
    Xinrui Lei, Aiping Yang, Xusheng Chen, Luping Du, Peng Shi, Qiwen Zhan, Xiaocong Yuan, "Skyrmionic spin textures in nonparaxial light," Adv. Photon. 7, 016009 (2025) Copy Citation Text show less
    References

    [1] S. L. Sondhi et al. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B Condens. Matter, 47, 16419-16426(1993).

    [2] L. Brey et al. Skyrme crystal in a two-dimensional electron gas. Phys. Rev. Lett., 75, 2562-2565(1995).

    [3] M. R. Matthews et al. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett., 83, 2498-2501(1999).

    [4] U. Al Khawaja, H. Stoof. Skyrmions in a ferromagnetic Bose–Einstein condensate. Nature, 411, 918-920(2001).

    [5] J. Fukuda, S. Zumer. Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal. Nat. Commun., 2, 246(2011).

    [6] S. Donati et al. Twist of generalized skyrmions and spin vortices in a polariton superfluid. Proc. Natl. Acad. Sci. U. S. A., 113, 14926-14931(2016).

    [7] J. H. Han et al. Skyrmion lattice in a two-dimensional chiral magnet. Phys. Rev. B, 82, 094429(2010).

    [8] X. Z. Yu et al. Real-space observation of a two-dimensional skyrmion crystal. Nature, 465, 901-904(2010).

    [9] S. Mühlbauer et al. Skyrmion lattice in a chiral magnet. Science, 323, 915-919(2009).

    [10] J. Sampaio et al. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol., 8, 839-844(2013).

    [11] N. Nagaosa, Y. Tokura. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol., 8, 899-911(2013).

    [12] B. Göbel, I. Mertig, O. A. Tretiakov. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep., 895, 1-28(2021).

    [13] S. Seki et al. Observation of skyrmions in a multiferroic material. Science, 336, 198-201(2012).

    [14] I. Kezsmarki et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater., 14, 1116-1122(2015). https://doi.org/10.1038/nmat4402

    [15] G. Yu et al. Room-temperature skyrmion shift device for memory application. Nano Lett., 17, 261-268(2017).

    [16] A. Fert, N. Reyren, V. Cros. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater., 2, 17031(2017).

    [17] K. M. Song et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron., 3, 148-155(2020).

    [18] X. Zhang et al. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. J. Phys.: Condens. Matter, 32, 143001(2020).

    [19] N. Romming et al. Writing and deleting single magnetic skyrmions. Science, 341, 636-639(2013).

    [20] R. Tomasello et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep., 4, 6784(2014).

    [21] H. Z. Wu et al. Hybrid magnetic skyrmion. Phys. Rev. B, 95, 174416(2017).

    [22] C. Reichhardt, C. J. O. Reichhardt, M. V. Milošević. Statics and dynamics of skyrmions interacting with disorder and nanostructures. Rev. Mod. Phys., 94, 035005(2022).

    [23] S. Banerjee et al. Enhanced stability of skyrmions in two-dimensional chiral magnets with Rashba spin-orbit coupling. Phys. Rev. X, 4, 031045(2014).

    [24] W. Jiang et al. Skyrmions in magnetic multilayers. Phys. Rep., 704, 1-49(2017).

    [25] L. Du et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650-654(2019).

    [26] S. Tsesses et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science, 361, 993-996(2018).

    [27] Y. Shen et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics, 18, 15-25(2023).

    [28] Y. Dai et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 588, 616-619(2020).

    [29] Y. Dai et al. Ultrafast microscopy of a twisted plasmonic spin skyrmion. Appl. Phys. Rev., 9, 011420(2022).

    [30] X. Lei et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett., 127, 237403(2021).

    [31] X. Lei, Q. Zhan. Topological charge constrained photonic skyrmion defects in split plasmonic vortices. ACS Photonics, 10, 3551-3557(2023).

    [32] R. Gutiérrez-Cuevas, E. Pisanty. Optical polarization skyrmionic fields in free space. J. Opt., 23, 024004(2021).

    [33] T. J. Davis et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science, 368, eaba6415(2020).

    [34] Z.-L. Deng et al. Observation of localized magnetic plasmon skyrmions. Nat. Commun., 13, 8(2022).

    [35] C. Liu et al. Disorder-induced topological state transition in the optical skyrmion family. Phys. Rev. Lett., 129, 267401(2022).

    [36] N. Zhang et al. Dynamic manipulation of graphene plasmonic skyrmions. Opt. Express, 31, 30020-30029(2023).

    [37] S. Gao et al. Paraxial skyrmionic beams. Phys. Rev. A, 102, 053513(2020).

    [38] W. Lin et al. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res., 3, 023055(2021).

    [39] H. Teng et al. Physical conversion and superposition of optical skyrmion topologies. Photonics Res., 11, 2042-2053(2023).

    [40] M. Król et al. Observation of second-order meron polarization textures in optical microcavities. Optica, 8, 255-261(2021).

    [41] S. Wang et al. Topological structures of energy flow: Poynting vector skyrmions. Phys. Rev. Lett., 133, 073802(2024).

    [42] T. Van Mechelen, Z. Jacob. Photonic Dirac monopoles and skyrmions: spin-1 quantization [Invited]. Opt. Mater. Express, 9, 95-111(2018).

    [43] C. Guo et al. Meron spin textures in momentum space. Phys. Rev. Lett., 124, 106103(2020).

    [44] K. Y. Bliokh et al. Spin–orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [45] Y. Zhao et al. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett., 99, 073901(2007).

    [46] D. O’Connor et al. Spin-orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun., 5, 5327(2014).

    [47] L. B. Ma et al. Spin-orbit coupling of light in asymmetric microcavities. Nat. Commun., 7, 10983(2016).

    [48] Z. Shao et al. Spin-orbit interaction of light induced by transverse spin angular momentum engineering. Nat. Commun., 9, 926(2018).

    [49] A. Yang et al. Spin-manipulated photonic skyrmion-pair for pico-metric displacement sensing. Adv. Sci., 10, e2205249(2023).

    [50] X. Lei et al. Optical spin–orbit coupling in the presence of magnetization: photonic skyrmion interaction with magnetic domains. Nanophotonics, 10, 3667-3675(2021).

    [51] A. Bekshaev, K. Y. Bliokh, M. Soskin. Internal flows and energy circulation in light beams. J. Opt., 13, 053001(2011).

    [52] A. Ghosh et al. The spin texture topology of polygonal plasmon fields. ACS Photonics, 10, 13-23(2023).

    [53] M. Lin et al. Photonic quasicrystal of spin angular momentum(2024).

    [54] M. Lin et al. Wavelength-tuned transformation between photonic skyrmion and meron spin textures. Appl. Phys. Rev., 11, 021408(2024).

    Xinrui Lei, Aiping Yang, Xusheng Chen, Luping Du, Peng Shi, Qiwen Zhan, Xiaocong Yuan, "Skyrmionic spin textures in nonparaxial light," Adv. Photon. 7, 016009 (2025)
    Download Citation