• Optics and Precision Engineering
  • Vol. 23, Issue 2, 504 (2015)
MIAO En-ming1,*, XU Zhi-shang1, ZHOU Xiao-shuai1, LEI De-rong2, and NI Yang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/ope.20152302.0504 Cite this Article
    MIAO En-ming, XU Zhi-shang, ZHOU Xiao-shuai, LEI De-rong, NI Yang. Simulation of thermal deformation of cylindrical mechanical parts bounded by boundary constraint based on conversion mechanism of thermal into mechanics[J]. Optics and Precision Engineering, 2015, 23(2): 504 Copy Citation Text show less
    References

    [1] CHENG CH, YANG CH M, ZHANG CH Y, et al.. Modeling on thermal errors of ball screw driving system on Elman network considering operating conditions [J].Opt. Precision Eng., 2014, 22(3): 704-711. (in Chinese)

    [2] WU X X, WANG M H, MING M, et al..Calibration of thermal distortion for large aperture SiC lightweight mirror [J].Opt. Precision Eng., 2012, 20(6): 1243-1249. (in Chinese)

    [3] DELBRESSINE F L M, FLORUSSEN G H J, SCHIJVENAARS L A, et al..Modelling thermomechanical behaviour of multi-axis machine tools[J]. Precision Engineering, 2006, 30(1): 47-53.

    [4] SHIMIZU S, IMAI N. Effective measurement method of thermal deformation of machine tools caused by linear axis motion[C]. Proceedings of the Seventeenth American Society for Precision Engineering Annual Meeting, St.Louis, USA: ASPE, 2002: 396-401.

    [5] MIAO E M, GONG Y Y, CHENG T J, et al.. Application of support vector regression machine to thermal error modelling of machine tools[J]. Opt. Precision Eng., 2013, 21(4): 980-986. (in Chinese)

    [6] MIAO E M, GONG Y Y, NIU P C, et al.. Robustness of thermal error compensation modeling models of CNC machine tools [J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(9-12): 2593-2603.

    [7] YAO H X, MIAO E M, NIU P CH. Selection of hole and axle interference fit tolerance [J]. Applied Mechanics and Materials, 2011, 80-81: 475-479.

    [8] YI H K, KIM E H, PARK S P, et al.. Reliability analysis of stainless steel/carbon steel double-layered tube on the basis of thermal deformation behavior[J]. Journal of Mechanical Science and Technology, 2013, 27(5): 1279-1285.

    [9] JAKSTAS A, KAUSINIS S, BARAUSKAS R, et al.. Thermal error analysis in precision length measurements[J]. Measurement, 2014, 51: 133-146.

    [10] LI G, YUAN H, MA X. Optimum design of the precise surface plate based on thermal deformation experiment and FEA[J]. Journal of Thermal Stresses, 2014, 37(1): 1-13.

    [11] LIU W T, CHEN L, FENG SH P, et al.. Finite element analysis and theoretical studies on thermal deformation of plate ring[J]. Nonferrous Metals Processing, 2012, 41(4): 14-15. (in Chinese)

    [12] LU D, JIANG P. Solid State Physic[M].Beijing: Higher Education Press, 2011. (in Chinese)

    [13] VINOGRADOV O. Using modified potential to account for non-zero temperature in molecular statics for crystals [J]. Computational Materials Science, 2008, 41(4): 493-497.

    [14] LI G, VINOGRADOV O, GUBANOV A. A modified Morse potential accounting for non-zero temperature in molecular statics for Nickel crystals [J]. Computational Materials Science, 2012, 62: 126-130.

    [15] FEI Y T, MIAO E M, LI G H, et al..Theory and Application of Mechanical Thermal Deformation[M]. Beijing: National Defence Industrial Press, 2009. (in Chinese)

    MIAO En-ming, XU Zhi-shang, ZHOU Xiao-shuai, LEI De-rong, NI Yang. Simulation of thermal deformation of cylindrical mechanical parts bounded by boundary constraint based on conversion mechanism of thermal into mechanics[J]. Optics and Precision Engineering, 2015, 23(2): 504
    Download Citation