• Journal of Atmospheric and Environmental Optics
  • Vol. 8, Issue 1, 1 (2013)
Chang-shui CHEN*, Rong-ting LIU, and Song-hao LIU
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2013.01.001 Cite this Article
    CHEN Chang-shui, LIU Rong-ting, LIU Song-hao. New Development of Infrared Detector[J]. Journal of Atmospheric and Environmental Optics, 2013, 8(1): 1 Copy Citation Text show less
    References

    [1] Gurnee M N, Kohin M, Blackwell R, et al. Developments in uncooled IR technology at BAE systems [C]. Proc. SPIE, 2001, 4369: 287-296.

    [2] Lawson W D, Nielson S, Putley E H, et al. Preparation and properties of HgTe and mixed crysals of HgTe-CdTe [J]. J. Phys. Chem. Solids, 1959, 9(3-4): 325-329.

    [3] Rogalski A. Infrared detectors: status and trends [J]. Prog. Quantum Electron., 2003, 27(2-3): 59-210.

    [4] Chen Jishu, Hu Xierong, Xu Pingmao. Infrared Detector [M]. Beijing: National Defense Industry Press, 1986: 1-3(in Chinese).

    [5] FLIR Inc. Uncooled detectors for thermal imaging cameras [DB/OL]. http://www.flir. com /uploadedFiles/ Eurasia/ Cores- and - Components /Technical- Notes/uncooled%20detectors%20BST. pdf.

    [6] Tissot J L, Tinnes S, Durand A, et al. High-performance uncooled amorphous silicon video graphics array and extended graphics array infrared focal plane arrays with 17 μm pixel pitch [J]. Opt. Eng., 2011, 50(6): 061006-061006-7.

    [7] Trouilleau C, Fiéque B, Noblet S, et al. High-performance uncooled amorphous silicon TEC less XGA IRFPA with 17 μm pixel-pitch [C]. Proc. SPIE, 2009, 7298: 72980Q-72980Q-6.

    [8] Li C, Han C J, Skidmore G D, et al. DRS uncooled VOx infrared detector development and production status [C]. Proc. SPIE, 2010, 7660: 76600V-76600V-9.

    [9] Xu Qingqing, Chen Jianxin, Zhou Yi, et al. Mid-wavelength infrared InAs/GaSb type Ⅱ superlattice detectors [J]. Infrared and Laser Engineering, 2012, 41(1): 7-9(in Chinese).

    [10] Rogalski A. Infrared detectors:status and trends [J].Prog. Quantum Electron., 2004, 27(4): 59-210.

    [11] Emelie P Y, Phillips J D, Velicu S, et al. Parameter extraction of HgCdTe infrared photodiodes exhibiting Auger suppression [J]. J. Phys. D: Appl. Phys., 2009, 42(23): 234003.1-234003.8.

    [12] Shi Yanli, Li Fan, Zhao Lusheng, et al. Photoelectric properties of InAs/GaSb type-Ⅱ superlattices [J]. Infrared and Laser Engineering, 2011, 40(6): 981-985(in Chinese).

    [13] Rogalski A. Infrared Detectors [M]. 2nd edition. FL, USA: CRC Press, 2010.

    [14] Rogalski A, Antoszewski J, Faraone L. Third—generation infrared photodetector arrays [J]. J. Appl. Phys., 2009, 105(9): 091101-1-091101-44.

    [15] Hipwood L G, Baker I M, Jones C L. LW IRFPAs made from HgCdTe grown by MOVPE for use in Multispectral Imaging [C]. Proc. SPIE, 2008, 6940: 69400G.1-69400G.8.

    [16] Kinch M A, Beck J D, Wan C F, et al. HgCdTe electron avalanche photodiodes [J]. J. Electron. Mater., 2004, 33(6): 630-639.

    [17] Leveque G, Nasser M, Bertho D, et al. Ionization energies in CdxHg1-xTe avalanche photodiodes [J]. Semicon. Sci. Technol., 1993, 8(7): 1317-1323.

    [18] de Borniola E, Guellec F, Rothman J. Recent progress in infrared detector technologies [C]. Proc. SPIE, 2010, 7660: 76603D-1-9.

    [19] Sundaram M, Reisinger A, Dennis R, et al. Status of quant μm well infrared photodetector technology at QmagiQ today [J]. Infrared Phys. Technol., 2010, 54(3): 194-198.

    [20] Serna M A, McCauley D W. Generalizing a quantum-well infrared single-pixel polarimeter (QWISPP) to Fourier transform spectral-polarimetric imaging [C]. Proc. SPIE, 2004, 5167: 175-185.

    [21] Gunapala S D, Bandara S V, Liu J K, et al. Development of mid-wavelength and long-wavelength megapixel portable QWIP imaging cameras [J]. Infrared Physics, 2005, 47(1-2): 67-75.

    [22] Eker S U, Kaldirim M, Arslan Y, et al. Large-format voltage-tunable dual-band quant μm-well infrared photodetector focal plane array for third-generation thermal imagers [J]. Infrared Phys. Technol., 2009, 52: 385-390.

    [23] Ting D Z, Hill C J, Soibel A, et al. Gain and noise of high-performance long wavelength superlattice infrared detectors [C]. Proc. SPIE, 2010, 7660: 76601R-1-12.

    [24] Mailhiot C, Smith D L, Vac J, et al. Proposal for strained type II superlattice infrared detectors [J]. Sci. Technol., 1989, A7: 445-449.

    [25] Hoffman C A, Meyer J R, Youngdale E R, et al. Electron transport in InAs/Ga1-xInxSb superlattices [J]. Solid State Electron., 1994, 37: 1203-1206.

    [26] Grein C H, Young P M, Ehrenreich H. Minority carrier lifetimes in ideal InGaSb/InAs superlattices [J]. Appl. Phys. Lett., 1992, 61(24): 2905-2907.

    [27] Razeghi M, Hoffman D, Nguyen B M, et al. Recent advances in LWIR Type-II InAs/GaSb superlattice photodetectors and focal plane arrays at the center for quant μm devices [C]. Proc. IEEE, 2009, 97(6):1056-1066.

    [28] Her T H, Finlay R J, Wu C, et al. Femtosecond laser-induced formation of spikes on silicon [J]. Appl. Phys. A, 2000, 70(4): 383-385.

    [29] Sheehy M A. Femtosecond-Laser Microstructuring of Silicon: Dopants and Defects [D]. Boston: Doctorial Dissertation of Harvard University, 2004, 65-10: 5168.

    [30] Huang Z H, Carey J E, Liu M, et al. Microstructured silicon photodetector [J]. Appl. Phys. Lett., 2006, 89(3): 033506.1-033506.3.

    [31] Su Yuanjie, Jiang Yadong, Wu Zhiming, et al. Influence of barrier layer on photoelectric properties of black silicon photodetectors [J]. Journal of Optoelectronics·Laser, 2011, (10): 1399-1442(in Chinese).

    [32] Xia Yan, Xue Chenyang, Ou Wen, et al. Thermopile infrared detector based on black silicon as absorption [J]. Instrument Technique and Sensor, 2012, (3): 11-14(in Chinese).

    [33] Yuan Jun, Tai Yunjian, Li Long, et al. Preparation of VOx films for uncooled infrared detectors [J]. Infrared Technology. 2009, 31(6): 334-337(in Chinese).

    [34] Yuan Jun, Tai Yunjian, Lei Xiaohong, et al. Research on fabrication of VOx UFPA detectors [J]. Infrared Technology, 2009, 31(1): 1-4(in Chinese).

    [35] Shanghai Institute of Technical Physics of the Chinese Academy of Sciences. Mercury cadmium telluride Infrared detector [OL]. http://www.tephys.com.cn/shownews.asp newsid =1724(in Chinese).

    [36] Shi Yanli. 320×256 GaAs/AlGaAs quant μm well infrared photodetector [J]. Infrared and Laser Engineering, 2008, 37(1): 42-44(in Chinese).

    [37] Wang Ke, Zheng Wanhua, Ren gang, et al. Design and optimization of photonic crystal coupling layer for bi-color quantum well infrared photodetectors [J]. Acta Physica Sinica, 2008, 57(3): 1730-1735(in Chinese).

    [38] Qi Lifang, Li Xianjie, Zhao Yonglin, et al. Development of a long wavelength two-color AlxGa1-xAs/ GaAs quant μm well infrared photo-detector [J]. Nanoelectronic Device & Technology, 2009, 46(7): 396-399(in Chinese).

    [39] Liu Xiaoyu, Ma Wenquan, Zhang Yanhua, et al. Two-color quant μm well infrared photodetector simultaneously working at 10-14 μm [J]. Acta Physica Sinica, 2010, 59(8): 5720-5723(in Chinese).

    [40] Sun Lu, Zhao Huiyuan, Su Binghua. Design of GaN-based quantum well infrared detector [J]. Modern Electronics Technique, 2011, 34(10): 208-210(in Chinese).

    [41] Zeng Gehong, Shi Yanli, Zhuang Jisheng. Principles, status and prospect of type Ⅱ superlattice infrared detectors [J]. Infrared Technology, 2011, 34(6): 208-210(in Chinese).

    [42] Terterian S, Nosho B, Sharifi H, et al. Fabrication and performance of InAs/GaSb-based superlattice LWIR detectors [C]. Proc. SPIE, 2010, 7660: 76601O-76601O-8.

    CLP Journals

    [1] Cai Yi, Xu Qingshan. Data Assimilation Between Atmospheric Temperature Profile of Moderate Resolution Imaging Spectroradiometer and Ground Sounding Data[J]. Laser & Optoelectronics Progress, 2017, 54(7): 70101

    [2] GAO Dongyang, XIA Maopeng, LI Jianjun, HU Youbo, LIU Yan, ZHENG Xiaobing. Measurement of Photon Count Rate Based on Broad-Band Parametric Down-Conversion[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(6): 482

    CHEN Chang-shui, LIU Rong-ting, LIU Song-hao. New Development of Infrared Detector[J]. Journal of Atmospheric and Environmental Optics, 2013, 8(1): 1
    Download Citation