• Photonics Research
  • Vol. 6, Issue 10, 965 (2018)
Yuxing Yang, Zhenzhen Xu, Xinhong Jiang, Yu He, Xuhan Guo, Yong Zhang, Ciyuan Qiu, and Yikai Su*
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1364/PRJ.6.000965 Cite this Article Set citation alerts
    Yuxing Yang, Zhenzhen Xu, Xinhong Jiang, Yu He, Xuhan Guo, Yong Zhang, Ciyuan Qiu, Yikai Su. High-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide with a windowed silica top layer[J]. Photonics Research, 2018, 6(10): 965 Copy Citation Text show less
    References

    [1] A. E. Willner, M. R. Chitgarha, O. F. Yilmaz. All-optical signal processing. J. Lightwave Technol., 32, 660-680(2014).

    [2] S. Gao, E.-K. Tien, Q. Song, Y. Huang, O. Boyraz. Ultra-broadband one-to-two wavelength conversion using low-phase-mismatching four-wave mixing in silicon waveguides. Opt. Express, 18, 11898-11903(2010).

    [3] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta. Broad-band optical parametric gain on a silicon photonic chip. Nature, 441, 960-963(2006).

    [4] Z. Li, G. Li. Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photon. Technol. Lett., 18, 1341-1343(2006).

    [5] J. V. Erps, F. Luan, M. D. Pelusi, T. Iredale, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, H. Thienpont, B. J. Eggleton. High-resolution optical sampling of 640-Gb/s Data. J. Lightwave Technol., 28, 209-215(2010).

    [6] R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, A. L. Gaeta. Signal regeneration using low-power four-wave mixing on silicon chip. Nat. Photonics, 2, 35-38(2008).

    [7] M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta. Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt. Express, 15, 12949-12958(2007).

    [8] L. Thylén, L. Wosinski. Integrated photonics in the 21st century. Photon. Res., 2, 75-81(2014).

    [9] Z. Zhou, B. Yin, Q. Deng, X. Li, J. Cui. Lowering the energy consumption in silicon photonic devices and systems. Photon. Res., 3, B28-B46(2015).

    [10] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [11] C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photonics, 3, 216-219(2009).

    [12] L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, S. Wen. Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime. Photon. Res., 3, 214-219(2015).

    [13] E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, S. A. Mikhailov. Coherent nonlinear optical response of graphene. Phys. Rev. Lett., 105, 097401(2010).

    [14] Y. Yang, R. Liu, J. Wu, X. Jiang, P. Cao, X. Hu, T. Pan, C. Qiu, J. Yang, Y. Song, D. Wu, Y. Su. Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach. Sci. Rep., 5, 13480(2015).

    [15] N. Vermeulen, J. Cheng, J. E. Sipe, H. Thienpont. Opportunities for wideband wavelength conversion in foundry-compatible silicon waveguides covered with graphene. IEEE J. Sel. Top. Quantum Electron., 22, 347-359(2016).

    [16] C. Donnelly, D. T. H. Tan. Ultra-large nonlinear parameter in graphene-silicon waveguide structures. Opt. Express, 22, 22820-22830(2014).

    [17] H. Li, Y. Anugrah, S. J. Koester, M. Li. Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett., 101, 111110(2012).

    [18] T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, C. W. Wong. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics, 6, 554-559(2012).

    [19] M. Ji, H. Cai, L. Deng, Y. Huang, Q. Huang, J. Xia, Z. Li, J. Yu, Y. Wang. Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator. Opt. Express, 23, 18679-18685(2015).

    [20] X. Hu, Y. Long, M. Ji, A. Wang, L. Zhu, Z. Ruan, Y. Wang, J. Wang. Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal. Opt. Express, 24, 7168-7177(2016).

    [21] H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, C. W. Wong. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides. Appl. Phys. Lett., 105, 091111(2014).

    [22] K. K. Chow, S. Yamashita, S. Y. Set. Four-wave-mixing-based wavelength conversion using a single-walled carbon-nanotube-deposited planar lightwave circuit waveguide. Opt. Lett., 35, 2070-2072(2010).

    [23] K. J. A. Ooi, L. K. Ang, D. T. H. Tan. Waveguide engineering of graphene’s nonlinearity. Appl. Phys. Lett., 105, 111110(2014).

    [24] M. Dinu, F. Quochi, H. Garcia. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett., 82, 2954-2956(2003).

    [25] H. R. K. J. Vahala. Observation of Kerr nonlinearity in microcavities at room temperature. Opt. Lett., 30, 427-429(2005).

    [26] X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, C. A. Richter. Toward clean and crackless transfer of graphene. ACS Nano, 5, 9144-9153(2011).

    [27] H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi. Four-wave mixing in silicon wire waveguides. Opt. Express, 13, 4629-4637(2005).

    [28] D. T. H. Tan, K. J. A. Ooi, D. K. T. Ng. Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform. Photon. Res., 6, B50-B66(2018).

    [29] C.-L. Wu, Y.-H. Lin, S.-P. Su, B.-J. Huang, G.-R. Lin. Degenerate four-wave mixing in Si quantum dot doped Si-rich SiNx channel waveguide. J. Lightwave Technol., 34, 4110-4119(2016).

    [30] K. J. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, L. K. Ang, A. M. Agarwal, L. C. Kimerling, D. T. H. Tan. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun., 8, 13878(2017).

    [31] J. W. Choi, B.-U. Sohn, G. F. R. Chen, D. K. T. Ng, D. T. H. Tan. Broadband incoherent four-wave mixing and 27  dB idler conversion efficiency using ultra-silicon rich nitride devices. Appl. Phys. Lett., 112, 181101(2018).

    CLP Journals

    [1] Hong Wang, Ningning Yang, Limin Chang, Chaobiao Zhou, Shiyu Li, Meng Deng, Zhenwei Li, Qiang Liu, Chi Zhang, Zhiyong Li, Yi Wang. CMOS-compatible all-optical modulator based on the saturable absorption of graphene[J]. Photonics Research, 2020, 8(4): 468

    Yuxing Yang, Zhenzhen Xu, Xinhong Jiang, Yu He, Xuhan Guo, Yong Zhang, Ciyuan Qiu, Yikai Su. High-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide with a windowed silica top layer[J]. Photonics Research, 2018, 6(10): 965
    Download Citation