• Nano-Micro Letters
  • Vol. 17, Issue 1, 016 (2025)
Feng He1, Sitong Chen1, Ruili Zhou1, Hanyu Diao2..., Yangyang Han3,* and Xiaodong Wu1,**|Show fewer author(s)
Author Affiliations
  • 1School of Mechanical Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
  • 2School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, People’s Republic of China
  • 3State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01532-z Cite this Article
    Feng He, Sitong Chen, Ruili Zhou, Hanyu Diao, Yangyang Han, Xiaodong Wu. Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers[J]. Nano-Micro Letters, 2025, 17(1): 016 Copy Citation Text show less
    References

    [1] Y. Wu, Y. Liu, Y. Zhou, Q. Man, C. Hu et al., A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3, eaat0429 (2018).

    [2] A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    [3] L.E. Osborn, A. Dragomir, J.L. Betthauser, C.L. Hunt, H.H. Nguyen et al., Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci. Robot. 3, eaat3818 (2018).

    [4] J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019).

    [5] S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33, 2005902 (2021).

    [6] H. Zhao, Y. Zhang, L. Han, W. Qian, J. Wang et al., Intelligent recognition using ultralight multifunctional nano-layered carbon aerogel sensors with human-like tactile perception. Nano-Micro Lett. 16, 11 (2023).

    [7] Z. Wang, S. Guo, H. Li, B. Wang, Y. Sun et al., The semiconductor/conductor interface piezoresistive effect in an organic transistor for highly sensitive pressure sensors. Adv. Mater. 31, 1805630 (2019).

    [8] L. Shi, Z. Li, M. Chen, Y. Qin, Y. Jiang et al., Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat. Commun. 11, 3529 (2020).

    [9] Y. Zang, F. Zhang, D. Huang, X. Gao, C.-A. Di et al., Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun. 6, 6269 (2015).

    [10] X. Wu, J. Zhu, J.W. Evans, A.C. Arias, A single-mode, self-adapting, and self-powered mechanoreceptor based on a potentiometric–triboelectric hybridized sensing mechanism for resolving complex stimuli. Adv. Mater. 32, 2005970 (2020).

    [11] Y. Zhang, Q. Liu, W. Ren, Y. Song, H. Luo et al., Bioinspired tactile sensation based on synergistic microcrack-bristle structure design towards high mechanical sensitivity and direction-resolving capability. Research 6, 017 (2023).

    [12] M. Khatib, O. Zohar, W. Saliba, H. Haick, A multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self-healing in designated locations. Adv. Mater. 32, 2000246 (2020).

    [13] H. Guo, Y.J. Tan, G. Chen, Z. Wang, G.J. Susanto et al., Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. 11, 5747 (2020).

    [14] B.W. An, S. Heo, S. Ji, F. Bien, J.-U. Park, Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018).

    [15] C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).

    [16] C. Pang, G.-Y. Lee, T.-I. Kim, S.M. Kim, H.N. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012).

    [17] N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11, 209 (2020).

    [18] J. Shin, Z. Liu, W. Bai, Y. Liu, Y. Yan et al., Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 5, eaaw1899 (2019).

    [19] Y. Yan, Z. Hu, Z. Yang, W. Yuan, C. Song et al., Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 6, eabc8801 (2021).

    [20] J. Ge, X. Wang, M. Drack, O. Volkov, M. Liang et al., A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat. Commun. 10, 4405 (2019).

    [21] K. Song, R. Zhao, Z.L. Wang, Y. Yang, Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv. Mater. 31, 1902831 (2019).

    [22] Y. Ji, K. Zhang, Z.L. Wang, Y. Yang, Piezo–pyro–photoelectric effects induced coupling enhancement of charge quantity in BaTiO3 materials for simultaneously scavenging light and vibration energies. Energy Environ. Sci. 12, 1231–1240 (2019).

    [23] T. Zhang, Y. Ding, C. Hu, M. Zhang, W. Zhu et al., Self-powered stretchable sensor arrays exhibiting magnetoelasticity for real-time human–machine interaction. Adv. Mater. 35, 2203786 (2022).

    [24] Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6, eabb9083 (2020).

    [25] X. Wu, M. Ahmed, Y. Khan, M.E. Payne, J. Zhu et al., A potentiometric mechanotransduction mechanism for novel electronic skins. Sci. Adv. 6, eaba1062 (2020).

    [26] X. Wu, J. Zhu, J.W. Evans, C. Lu, A.C. Arias, A potentiometric electronic skin for thermosensation and mechanosensation. Adv. Funct. Mater. 31, 2010824 (2021).

    [27] Q. Zhang, D. Lei, N. Liu, Z. Liu, Z. Ren et al., A zinc-ion battery-type self-powered pressure sensor with long service life. Adv. Mater. 34, 2205369 (2022).

    [28] J. Zhang, W. Ren, S. Chen, R. Wang, H. Luo et al., Facile construction of self-powered electronic textiles for comprehensive respiration analysis. Adv. Intell. Syst. 6, 2300558 (2024).

    [29] J. Zhang, H. Zhang, W. Ren, W. Gong, Y. Lu et al., Skin-triggered electrochemical touch sensation for self-powered human-machine interfacing. Sens Actuators. B-Chem. 406, 135443 (2024).

    [30] R.S. Johansson, J.R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009).

    [31] R. Ikeda, M. Cha, J. Ling, Z. Jia, D. Coyle et al., Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 157, 664–675 (2014).

    [32] W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023).

    [33] V. Amoli, J.S. Kim, E. Jee, Y.S. Chung, S.Y. Kim et al., A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin. Nat. Commun. 10, 4019 (2019).

    [34] A.V. Volkov, K. Wijeratne, E. Mitraka, U. Ail, D. Zhao et al., Understanding the capacitance of PEDOT:PSS. Adv. Funct. Mater. 27, 1700329 (2017).

    [35] M. Berggren, G.G. Malliaras, How conducting polymer electrodes operate. Science 364, 233–234 (2019).

    [36] G. Rebetez, O. Bardagot, J. Affolter, J. Réhault, N. Banerji, What drives the kinetics and doping level in the electrochemical reactions of PEDOT: PSS? Adv. Funct. Mater. 32, 2105821 (2022).

    [37] I. Zozoulenko, A. Singh, S.K. Singh, V. Gueskine, X. Crispin et al., Polarons, bipolarons, and absorption spectroscopy of pedot. ACS Appl. Polym. Mater. 1, 83–94 (2018).

    [38] B.D. Paulsen, R. Wu, C.J. Takacs, H.G. Steinrück, J. Strzalka et al., Time-resolved structural kinetics of an organic mixed ionic–electronic conductor. Adv. Mater. 32, 2003404 (2020).

    [39] W. Ling, G. Liew, Y. Li, Y. Hao, H. Pan et al., Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal–organic frameworks. Adv. Mater. 30, 1800917 (2018).

    [40] Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human–machine interfacing. Nano Lett. 19, 1143–1150 (2019).

    [41] S.J. Zhang, H.Q. Yu, Radiation-induced degradation of polyvinyl alcohol in aqueous solutions. Water Res. 38, 309–316 (2004).

    [42] S. Sreejith, L.M.I. Leo Joseph, S. Kollem, V.T. Vijumon, J. Ajayan, Biodegradable sensors: a comprehensive review. Measurement 219, 113261 (2023).

    [43] T. Dinh, H.-P. Phan, T.-K. Nguyen, A. Qamar, A.R.M. Foisal et al., Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare. J. Mater. Chem. C 4, 10061–10068 (2016).

    Feng He, Sitong Chen, Ruili Zhou, Hanyu Diao, Yangyang Han, Xiaodong Wu. Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers[J]. Nano-Micro Letters, 2025, 17(1): 016
    Download Citation