• Optics and Precision Engineering
  • Vol. 30, Issue 1, 117 (2022)
Guixiong LIU* and Jian HUANG
Author Affiliations
  • School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510640, China
  • show less
    DOI: 10.37188/OPE.20223001.0117 Cite this Article
    Guixiong LIU, Jian HUANG. Transfer learning techniques for semantic segmentation of machine vision inspection and identification based on label-reserved Softmax algorithms[J]. Optics and Precision Engineering, 2022, 30(1): 117 Copy Citation Text show less
    Fine-tuning transfer learning framework based on label-reserved improved Softmax algorithms
    Fig. 1. Fine-tuning transfer learning framework based on label-reserved improved Softmax algorithms
    Model of label-reserved improved Softmax algorithms
    Fig. 2. Model of label-reserved improved Softmax algorithms
    Head architecture of label-reserved Mask R-CNN
    Fig. 3. Head architecture of label-reserved Mask R-CNN
    Comparison of different migration learning methods
    Fig. 4. Comparison of different migration learning methods
    Semantic segmentation results of chassis assemblies
    Fig. 5. Semantic segmentation results of chassis assemblies
    Basic functions of MVAQ2 chassis standard parts assembly quality inspection and identification software
    Fig. 6. Basic functions of MVAQ2 chassis standard parts assembly quality inspection and identification software
    MVAQ2 chassis standard parts assembly quality inspection and identification devices
    Fig. 7. MVAQ2 chassis standard parts assembly quality inspection and identification devices
    Chassis learning process of MVAQ2 devices
    Fig. 8. Chassis learning process of MVAQ2 devices
    源数据集Dsource目标数据集Dtarget模型结构调整模型初始权值WCNNLCETtrain/min
    ImageNet7iFixit18输出层Wmain4.892258
    COCO8iFixit18输出层WmainWseg1.542115
    iFixit18iFixit18WmainWseg1.29785
    iFixit18iFixit18WmainWsegWcla0.01958
    Table 1. Ttrain and LCE of pre-trained Mask R-CNN model fine-tuning transfer learning initial various weights WCNN
    参 数典型Softmax算法17标签预留改进Softmax算法
    输入特征向量nsource×1维Xnsource+nreserved)×1维X'
    分类器权值

    nsourcensource×1维

    Wcla={W1,,Wnsource}

    nsource+nreserved)个(nsource+nreserved)×1维

    W'cla={W1,,Wnsource+nreserved}

    输出概率向量nsource×1维Pnsource+nreserved)×1维P'
    标签集C'cla=CsourceC'cla=CsourceCreversed
    Table 2. Parameter comparison of label-reserved and general Softmax algorithms
    方 法源数据集Dsource目标数据集Dtarget模型结构调整Ttrain/min
    Fine-tuning17不可扩展机箱可扩展机箱输出层42.8
    特征提取Fine-tuning20不可扩展机箱可扩展机箱输出层36.5
    本文方法不可扩展机箱可扩展机箱30.1
    Table 3. Training time ofdifferent transfer learning methods
    Guixiong LIU, Jian HUANG. Transfer learning techniques for semantic segmentation of machine vision inspection and identification based on label-reserved Softmax algorithms[J]. Optics and Precision Engineering, 2022, 30(1): 117
    Download Citation