• High Power Laser and Particle Beams
  • Vol. 35, Issue 7, 071005 (2023)
Tian Ma, Fuquan Li, and Honghuan Lin
Author Affiliations
  • Laser Fusion Research Center, CAEP, P. O. Box 919-988, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202335.220367 Cite this Article
    Tian Ma, Fuquan Li, Honghuan Lin. Recent progress of high power green laser based on frequency doubling technology for fiber laser[J]. High Power Laser and Particle Beams, 2023, 35(7): 071005 Copy Citation Text show less
    References

    [1] Uraoka Y, Kawamura Y, Yamasaki K, et al. Crystallization by green-laser annealing for three-dimensional device application[J]. Journal of the Korean Physical Society, 56, 1456-1460(2010).

    [2] Hay N, Baker I, Guo Yili, et al. Stabilityenhanced, highaverage power green lasers f precision semiconduct processing[C]Proceedings of SPIE 8235, Solid State Lasers XXI: Technology Devices. 2012: 82351E.

    [3] Chellappan K V, Erden E, Urey H. Laser-based displays: a review[J]. Applied Optics, 49, F79-F98(2010).

    [4] Zhou Pu, Leng Jinyong, Xiao Hu, . High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 48, 2000001(2021).

    [5] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).

    [6] Shiner B. The impact of fiber laser technology on the wld wide material processing market[C]CLEO: Science Innovations 2013. 2013: AF2J. 1.

    [7] Lin Honghuan, Xu Lixin, Li Chengyu, et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 14, 102479(2019).

    [8] Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW QCW regimes producing over 550W of average output power[C]Proceedings of SPIE 8964, Nonlinear Frequency Generation Conversion: Materials, Devices, Applications XIII. 2014: 896407.

    [9] Avdokhin A, Gapontsev V, Kadwani P, et al. High average power quasiCW singlemode green UV fiber lasers[C]Proceedings of SPIE 9347, Nonlinear Frequency Generation Conversion: Materials, Devices, Applications XIV. 2015: 934704.

    [10] Ahmadi P, Creeden D, haffenburg D, et al. Generating kW laser light at 532 nm via second harmonic generation of a high power Ybdoped fiber amplifier[C]Proceedings of SPIE 11264, Nonlinear Frequency Generation Conversion: Materials Devices XIX. 2020: 1126414.

    [11] Su Mengqi, You Yang, Quan Zhao, et al. 321 W high-efficiency continuous-wave green laser produced by single-pass frequency doubling of a narrow-linewidth fiber laser[J]. Applied Optics, 60, 3836-3841(2021).

    [12] Su Mengqi, You Yang, Quan Zhao, . 610-W continuous-wave single-mode green laser output based on highly efficient single-pass frequency doubling[J]. Chinese Journal of Lasers, 48, 1315002(2021).

    [13] Tsubakimoto K, Yoshida H, Miyanaga N. 600 W green and 300 W UV light generated from an eight-beam, sub-nanosecond fiber laser system[J]. Optics Letters, 42, 3255-3258(2017).

    [14] Michailovas A, Mikalauskas S, Regelskis K, et al. Method device f combining laser beams: 2194426[P]. 20160323.

    [15] Želudevičius J, Regelskis K, Račiukaitis G. Experimental demonstration of pulse multiplexing and beam combining of four fiber lasers by noncollinear frequency conversion in an LBO crystal[J]. Optics Letters, 42, 175-178(2017).

    [16] Želudevičius J, Rutkauskas R, Regelskis K. Coherent beam combining of pulsed fiber amplifiers by noncolinear sum-frequency generation[J]. Optics Letters, 44, 1813-1816(2019).

    [17] Dmitriev V G, Gurzadyan G G, Nikogosyan D N. Hbook of nonlinear optical crystals[M]. Berlin, Heidelberg: Springer, 1991.

    [18] Avdokhin A V, Gapontsev V P, Grapov Y S. 170W continuouswave singlefrequency singlemode green fiber laser[C]Proceedings of SPIE 8237, Fiber Lasers IX: Technology, Systems, Applications. 2012.

    [19] Carrion L, Girardeau-Montaut J P. Gray-track damage in potassium titanyl phosphate under a picosecond regime at 532 nm[J]. Applied Physics Letters, 77, 1074-1076(2000).

    [20] Alexrovski A L, Foulon G, Myers L E, et al. UV visible absption in LiTaO3[C]Proceedings of SPIE 3610, Laser Material Crystal Growth Nonlinear Materials Devices. 1999: 4451.

    [21] Li Xiaomao. Research on the weak absption laserinduced damage of nonlinear optical crystals[D]. Beijing: Technical Institute of Physics Chemistry, CAS, 2013

    [22] Mühlig C. Direct absolute absption measurements in optical materials coatings by laser induced deflection (LID) technique[C]Proceedings of SPIE 8206, Pacific Rim Laser Damage 2011: Optical Materials f High Power Lasers. 2012: 82061I.

    Tian Ma, Fuquan Li, Honghuan Lin. Recent progress of high power green laser based on frequency doubling technology for fiber laser[J]. High Power Laser and Particle Beams, 2023, 35(7): 071005
    Download Citation