• Advanced Photonics
  • Vol. 1, Issue 1, 016003 (2019)
Xueming Liu1、2、3、* and Yudong Cui1
Author Affiliations
  • 1Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
  • 2Nanjing University of Aeronautics and Astronautics, Institute for Advanced Interdisciplinary Research, Nanjing, China
  • 3Hunan University of Science and Technology, School of Physics and Electronic Science, Xiangtan, China
  • show less
    DOI: 10.1117/1.AP.1.1.016003 Cite this Article Set citation alerts
    Xueming Liu, Yudong Cui. Revealing the behavior of soliton buildup in a mode-locked laser[J]. Advanced Photonics, 2019, 1(1): 016003 Copy Citation Text show less
    References

    [1] G. Herink et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photonics, 10, 321-326(2016).

    [2] M. Anderson et al. Coexistence of multiple nonlinear states in a tristable passive Kerr resonator. Phys. Rev. X, 7, 031031(2017).

    [3] K. Goda, K. K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458, 1145-1149(2009).

    [4] B. Li et al. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nat. Commun., 8, 61(2017).

    [5] M. Pang et al. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat. Photonics, 10, 454-458(2016).

    [6] H. Guo et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

    [7] M. Chernysheva et al. Carbon nanotubes for ultrafast fibre lasers. Nanophotonics, 6, 1-30(2017).

    [8] P. J. Ackerman, I. I. Smalyukh. Diversity of knot solitons in liquid crystals manifested by linking of preimages in Torons and Hopfions. Phys. Rev. X, 7, 011006(2017).

    [9] J. M. Dudley et al. Instabilities, breathers and rogue waves in optics. Nat. Photonics, 8, 755-764(2014).

    [10] E. Obrzud, S. Lecomte, T. Herr. Temporal solitons in microresonators driven by optical pulses. Nat. Photonics, 11, 600-607(2017).

    [11] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics, 6, 84-92(2012).

    [12] Y. Wang et al. Universal mechanism for the binding of temporal cavity solitons. Optica, 4, 855-863(2017).

    [13] M. Yu et al. Breather soliton dynamics in microresonators. Nat. Commun., 8, 14569(2017).

    [14] Q. Yang et al. Counter-propagating solitons in microresonators. Nat. Photonics, 11, 560-564(2017).

    [15] X. Yi et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2017).

    [16] T. Dauxois, M. Peyrard. Physics of Solitons(2015).

    [17] K. Krupa et al. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett., 118, 243901(2017).

    [18] P. Marinpalomo et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [19] M. G. Suh et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [20] L. G. Wright, D. N. Christodoulides, F. W. Wise. Spatiotemporal mode-locking in multimode fiber lasers. Science, 358, 94-97(2017).

    [21] J. Javaloyes, M. Marconi, M. Giudici. Nonlocality induces chains of nested dissipative solitons. Phys. Rev. Lett., 119, 033904(2017).

    [22] M. Stratmann, T. Pagel, F. Mitschke. Experimental observation of temporal soliton molecules. Phys. Rev. Lett., 95, 143902(2005).

    [23] F. Gustave et al. Observation of mode-locked spatial laser solitons. Phys. Rev. Lett., 118, 044102(2017).

    [24] D. Abraham et al. Transient dynamics in a self-starting passively mode-locked fiber-based soliton laser. Appl. Phys. Lett., 63, 2857-2859(1993).

    [25] C. Hönninger et al. Q-switching stability limits of continuous wave passive mode locking. J. Opt. Soc. Am. B, 16, 46-56(1999).

    [26] L. Zinkiewicz, F. Ozimek, P. Wasylczyk. Witnessing the pulse birth-transient dynamics in a passively mode-locked femtosecond laser. Laser Phys. Lett., 10, 125003(2013).

    [27] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [28] D. R. Solli et al. Fluctuations and correlations in modulation instability. Nat. Photonics, 6, 463-468(2012).

    [29] D. R. Solli, J. Chou, B. Jalali. Amplified wavelength time transformation for real-time spectroscopy. Nat. Photonics, 2, 48-51(2008).

    [30] G. Herink et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science, 356, 50-54(2017).

    [31] Y. Xu et al. Ultrafast measurements of optical spectral coherence by single-shot time-stretch interferometry. Sci. Rep., 6, 27937(2016).

    [32] D. R. Solli et al. Optical rogue waves. Nature, 450, 1054-1057(2007).

    [33] T. Godin et al. Real time noise and wavelength correlations in octave-spanning super continuum generation. Opt. Express, 21, 18452-18460(2013).

    [34] X. Wei et al. Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies. Opt. Express, 25, 29098-29120(2017).

    [35] P. Ryczkowski et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics, 12, 221-227(2018).

    [36] A. F. J. Runge, N. G. R. Broderick, M. Erkintalo. Dynamics of soliton explosions in passively mode-locked fiber lasers. J. Opt. Soc. Am. B, 33, 46-53(2016).

    [37] A. F. J. Runge, N. G. R. Broderick, M. Erkintalo. Observation of soliton explosions in a passively mode-locked fiber laser. Optica, 2, 36-39(2015).

    [38] M. Liu et al. Successive soliton explosions in an ultrafast fiber laser. Opt. Lett., 41, 1181-1184(2016).

    [39] A. Chong, L. Wright, F. Wise. Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress. Rep. Prog. Phys., 78, 113901(2015).

    [40] E. Kelleher, J. Travers. Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers. Opt. Lett., 39, 1398-1401(2014).

    [41] F. Krausz, T. Brabec, C. Spielmann. Self-starting passive mode locking. Opt. Lett., 16, 235-237(1991).

    [42] E. P. Ippen. Principles of passive mode locking. Appl. Phys. B, 58, 159-170(1994).

    [43] J. Herrmann. Starting dynamic, self-starting condition and mode-locking threshold in passive, coupled-cavity or Kerr-lens mode-locked solid-state lasers. Opt. Commun., 98, 111-116(1993).

    [44] J. M. Shieh et al. Completely self-starting picosecond and femtosecond Kerr-lens mode-locked Ti:sapphire laser. J. Opt. Soc. Am. B, 12, 945-949(1995).

    [45] J. Solis et al. Experimental study of a self-starting Kerr-lens mode-locked titanium-doped sapphire laser. Opt. Commun., 123, 547-552(1996).

    [46] J. C. Kuo et al. Pulse-forming dynamics of a cw passively mode-locked Ti:sapphire/DDI laser. Opt. Lett., 17, 334-336(1992).

    [47] N. W. Pu et al. Starting dynamics of a cw passively mode-locked picosecond Ti:sapphire/DDI laser. Opt. Lett., 20, 163-165(1995).

    [48] H. Li, D. G. Ouzounov, F. W. Wise. Starting dynamics of dissipative-soliton fiber laser. Opt. Lett., 35, 2403-2405(2010).

    [49] Y. Yu et al. Spectral-temporal dynamics of multipulse mode-locking. Appl. Phys. Lett., 110, 201107(2017).

    [50] J. Peng et al. Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers. Commun. Phys., 1, 20(2018).

    [51] J. Peng, H. Zeng. Build-up of dissipative optical soliton molecules via diverse soliton interactions. Laser Photonics Rev., 12, 1800009(2018).

    [52] X. Liu, X. Yao, Y. Cui. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett., 121, 023905(2018).

    [53] Y. C. Tong, L. Y. Chan, H. K. Tsang. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope. Electron. Lett., 33, 983-985(1997).

    [54] A. Mahjoubfar et al. Time stretch and its applications. Nat. Photonics, 11, 341-351(2017).

    [55] O. Svelto. Principles of Lasers(2010).

    [56] L. Larger, B. Penkovsky, Y. Maistrenko. Virtual chimera states for delayed-feedback systems. Phys. Rev. Lett., 111, 054103(2013).

    [57] D. V. Churkin et al. Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers. Nat. Commun., 6, 7004(2015).

    [58] J. K. Jang et al. Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photonics, 7, 657-663(2013).

    [59] B. Garbin et al. Topological solitons as addressable phase bits in a driven laser. Nat. Commun., 6, 5915(2015).

    [60] A. Bednyakova, S. K. Turitsyn. Adiabatic soliton laser. Phys. Rev. Lett., 114, 113901(2015).

    [61] S. M. Kelly. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett., 28, 806(1992).

    [62] X. Liu et al. Distributed ultrafast fibre laser. Sci. Rep., 5, 9101(2015).

    [63] H. A. Haus, W. S. Wong. Solitons in optical communications. Rev. Mod. Phys., 68, 423-444(1996).

    [64] G. P. Agrawal. Nonlinear Fiber Optics(2007).

    [65] R. Dunsmuir. Theory of relaxation oscillations in optical masers. Int. J. Electron., 10, 453-458(1961).

    [66] M. Leonetti, C. Conti, C. Lopez. The mode-locking transition of random lasers. Nat. Photonics, 5, 615-617(2011).

    [67] T. Herr et al. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [68] X. Liu et al. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes. Sci. Rep., 3, 2718(2013).

    [69] A. A. Grutter, H. P. Weber, R. Dandliker. Imperfectly mode-locked laser emission and its effects on nonlinear optics. Phys. Rev., 185, 629-643(1969).

    [70] R. H. Picard, P. Schweitzer. Theory of intensity correlation measurements of imperfectly mode-locked lasers. Phys. Rev. A, 1, 1803-1818(1970).

    [71] R. Dandliker, H. P. Weber, A. A. Grutter. Influence of systematic phase deviations on the output of mode-locked lasers. Z. Angew. Math. Phys., 20, 572-574(1969).

    [72] G. P. Agrawal. Applications of Nonlinear Fiber Optics(2008).

    [73] G. P. Agrawal. Amplification of ultrashort solitons in erbium-doped fiber amplifiers. IEEE Photonics Technol. Lett., 2, 875-877(1990).

    [74] X. Liu, B. Lee. A fast method for nonlinear Schrodinger equation. IEEE Photonics Technol. Lett., 15, 1549-1551(2003).

    CLP Journals

    [1] Kangjun Zhao, Chenxin Gao, Xiaosheng Xiao, Changxi Yang. Real-time collision dynamics of vector solitons in a fiber laser[J]. Photonics Research, 2021, 9(3): 289

    [2] Yiyang Luo, Ran Xia, Perry Ping Shum, Wenjun Ni, Yusong Liu, Huy Quoc Lam, Qizhen Sun, Xiahui Tang, Luming Zhao. Real-time dynamics of soliton triplets in fiber lasers[J]. Photonics Research, 2020, 8(6): 884

    [3] Jiafeng Lu, Fan Shi, Linghao Meng, Longkun Zhang, Linping Teng, Zhengqian Luo, Peiguang Yan, Fufei Pang, Xianglong Zeng. Real-time observation of vortex mode switching in a narrow-linewidth mode-locked fiber laser[J]. Photonics Research, 2020, 8(7): 1203

    [4] Xuanke Zeng, Shuiqin Zheng, Yi Cai, Qinggang Lin, Jinyang Liang, Xiaowei Lu, Jingzhen Li, Weixin Xie, Shixiang Xu. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification[J]. Advanced Photonics, 2020, 2(5): 056002

    [5] Hongan Gu, Zhipeng Qin, Guoqiang Xie, Ting Hai, Peng Yuan, Jingui Ma, Liejia Qian. Generation of 131 fs mode-locked pulses from 2.8 μm Er:ZBLAN fiber laser[J]. Chinese Optics Letters, 2020, 18(3): 031402

    [6] Xiao-Cong (Larry) Yuan, Anatoly Zayats. Laser: sixty years of advancement[J]. Advanced Photonics, 2020, 2(5): 050101

    Xueming Liu, Yudong Cui. Revealing the behavior of soliton buildup in a mode-locked laser[J]. Advanced Photonics, 2019, 1(1): 016003
    Download Citation