• Chinese Journal of Lasers
  • Vol. 48, Issue 24, 2401003 (2021)
Wenhui Cui1、2、*, Jianqiang Zhu1、**, Yuanqi He1、2, Zhigang Liu1, Quantang Fan1, Weiheng Lin1、2, and Ziming Dong1
Author Affiliations
  • 1Joint Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL202148.2401003 Cite this Article Set citation alerts
    Wenhui Cui, Jianqiang Zhu, Yuanqi He, Zhigang Liu, Quantang Fan, Weiheng Lin, Ziming Dong. Target Deviation of SG Facility Based on Active Vibration Absorption Control[J]. Chinese Journal of Lasers, 2021, 48(24): 2401003 Copy Citation Text show less
    Schematic of overall optical path arrangement of SG-Ⅱ series laser facility
    Fig. 1. Schematic of overall optical path arrangement of SG-Ⅱ series laser facility
    Full link beam transmission model of SG-Ⅱ series facility
    Fig. 2. Full link beam transmission model of SG-Ⅱ series facility
    Optomechanical coupling active vibration absorption system in the spatial filter
    Fig. 3. Optomechanical coupling active vibration absorption system in the spatial filter
    Model of optomechanical coupling dynamic vibration absorption system
    Fig. 4. Model of optomechanical coupling dynamic vibration absorption system
    Diagram of beam transmission misalignment of spatial filter
    Fig. 5. Diagram of beam transmission misalignment of spatial filter
    Control flow of adaptive fuzzy-PID
    Fig. 6. Control flow of adaptive fuzzy-PID
    Self-calibration flow chart
    Fig. 7. Self-calibration flow chart
    Variation rules of output light angle response peak value of optomechanical coupling active vibration absorption system under parameter regulation. (a) Effect analysis of velocity feedback gain gP; (b) effect analysis of displacement feedback gain gI
    Fig. 8. Variation rules of output light angle response peak value of optomechanical coupling active vibration absorption system under parameter regulation. (a) Effect analysis of velocity feedback gain gP; (b) effect analysis of displacement feedback gain gI
    Control parameter optimization using the optomechanical coupling active vibration absorption system. (a) Optimization of velocity feedback gaingP; (b) optimization of displacement feedback gaingI
    Fig. 9. Control parameter optimization using the optomechanical coupling active vibration absorption system. (a) Optimization of velocity feedback gaingP; (b) optimization of displacement feedback gaingI
    Comparison of output angle response peak control effects of three control modes
    Fig. 10. Comparison of output angle response peak control effects of three control modes
    Comparison of shooting error control results of spatial filter in SG-Ⅱ spatial filter
    Fig. 11. Comparison of shooting error control results of spatial filter in SG-Ⅱ spatial filter
    Comparison of shooting deviation control results of spatial filter in SG-Ⅱ high-energy laser system
    Fig. 12. Comparison of shooting deviation control results of spatial filter in SG-Ⅱ high-energy laser system
    Comparison of target shooting deviation control results of spatial filter in SG-Ⅱ upgrading facility
    Fig. 13. Comparison of target shooting deviation control results of spatial filter in SG-Ⅱ upgrading facility
    eec
    NBNMNSZOPSPMPB
    NBPBPBPMPMPSZOZO
    NMPBPBPMPSPSZONS
    NSPMPMPMPSZONSNS
    ZOPMPMPSZONSNMNM
    PSPSPSZONSNSNMNM
    PMPSZONSNMNMNMNB
    PBZOZONMNMNMNBNB
    Table 1. ΔKP fuzzy control rules
    eec
    NBNMNSZOPSPMPB
    NBNBNBNMNMNSZOZO
    NMNBNBNMNSNSZOZO
    NSNBNMNSNSZOPSPS
    ZONMNMNSZOPSPMPM
    PSNMNSZOPSPSPMPB
    PMZOZOPSPSPMPBPB
    PBZOZOPSPMPMPBPB
    Table 2. ΔKI fuzzy control rules
    eec
    NBNMNSZOPSPMPB
    NBPSNSNBNBNBNMPS
    NMPSNSNBNMNMNSZO
    NSZONSNMNMNSNSZO
    ZOZONSNSNSNSNSZO
    PSZOZOZOZOZOZOZO
    PMPBNSPSPSPSPSPB
    PBPBPMPMPMPSPSPB
    Table 3. ΔKD fuzzy control rules
    Spatial filterfi,2 /mmiqiΔxtradit /μmΔxPDVA /μmΔxADVA /μm
    SF01.0002.0000.00340.2520.1720.060
    SF11.9562.4550.00430.3190.2190.075
    SF21.8603.0140.01371.0200.6970.240
    SF34.6003.4330.01901.4100.9670.504
    SF41.7521.0000.04993.7102.5400.874
    SF53.9501.8190.04032.9902.0500.706
    SF63.2311.4300.07045.2303.5801.230
    SF79.8562.2430.05183.8502.6400.907
    SF814.5021.4700.05173.8402.6300.906
    Table 4. Spatial filter parameters and target deviation control indexes of SG-Ⅱ facility
    Spatial filterfi,2/mmiqiΔxtradit/μmΔxPDVA/μmΔxADVA/μm
    SF01.00002.0000.00610.450.310.107
    SF11.95592.4550.00760.570.390.133
    SF21.86003.0140.02411.791.230.421
    SF32.38252.9600.05564.132.830.974
    SF41.99712.0000.13279.866.752.320
    SF54.08081.5000.09747.244.961.710
    SF64.86432.1200.173312.908.823.040
    SF75.65471.7300.257919.2013.104.520
    SF88.48761.0800.185613.809.443.250
    Table 5. Spatial filter parameters and target deviation control indexes of SG-Ⅱ high-energy laser system
    Spatial filterfi,2/mmiqiΔxtradit/μmΔxPDVA/μmΔxADVA/μm
    SF01.8001.00000.04002.972.040.70
    SF12.0801.60000.05544.122.820.97
    SF22.8501.50000.06074.513.091.06
    SF32.6002.00000.13309.886.772.33
    SF416.0006.45840.139610.407.102.45
    SF511.1170.93550.188014.009.573.29
    SF611.8831.06890.188014.009.573.29
    SF711.1170.93550.188014.009.573.29
    SF811.8831.06890.188014.009.573.29
    SF916.0001.00000.139610.407.102.45
    Table 6. Spatial filter parameters and target deviation control indexes of SG-Ⅱ upgrading facility
    Test systemΔxtradit/μmΔxPDVA/μmΔxADVA/μm
    SG-Ⅱ facility5.413.731.30
    SG-Ⅱ high-energy laser system7.675.311.87
    SG-Ⅱ upgrading facility6.524.501.57
    Table 7. Shooting accuracy test data of SG-Ⅱ series facilities
    Wenhui Cui, Jianqiang Zhu, Yuanqi He, Zhigang Liu, Quantang Fan, Weiheng Lin, Ziming Dong. Target Deviation of SG Facility Based on Active Vibration Absorption Control[J]. Chinese Journal of Lasers, 2021, 48(24): 2401003
    Download Citation