• Optics and Precision Engineering
  • Vol. 28, Issue 2, 485 (2020)
LIU Kai, WANG Kan, YANG Xiao-mei, and ZHENG Xiu-juan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20202802.0485 Cite this Article
    LIU Kai, WANG Kan, YANG Xiao-mei, ZHENG Xiu-juan. DoG keypoint detection based fast binary descriptor[J]. Optics and Precision Engineering, 2020, 28(2): 485 Copy Citation Text show less
    References

    [1] LU D X, SHI H J. A SIFT-Based image fusion method[C]. Proceedings of the 14th IEEE International Conference on Signal Processing, Beijing, China: ICSP, 2018: 375-378.

    [3] DUAN Y Q, LU J, FENG J J, et al.. Context-aware local binary feature learning for face recognition[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2018, 40(5): 1139-1153.

    [4] CAI H Y, WU X Y, ZHUO L R, et al.. Fast SIFT image stitching algorithm combining edge detection[J]. Infrared and Laser Engineering, 2018, 47(11): 1126003-1126003(7). (in Chinese)

    [5] VERMA M, RAMAN B. Local neighborhood difference pattern: A new feature descriptor for natural and texture image retrieval[J]. Multimedia Tools and Applications, 2018, 77(10): 11843-11866.

    [6] WANG J, YU M, REN H E. Improved ORB algorithm used in image stitching[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(6): 520-527. (in Chinese)

    [7] WESTOBY M J, BRASINGTON J, GLASSER N F, et al.. Structure from motion photogrammetry: A low-cost, effective tool for geoscience applications[J]. Geomorphology, 2012, 179: 300-314.

    [8] SNAVELY N, SEITZ S M, SZELISKI R. Photo tourism: exploring photo collection in 3D[J]. ACM Transactions on Graphics, 2006, 25(3): 835-846.

    [9] TUYTELAARS T, MIKOLAJCZYK K. Local invariant feature detectors: a survey[J]. Foundations and Trends in Computer Graphics and Vision, 2008, 3(3): 177-280.

    [10] MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.

    [11] HEINLY J, DUNN E, FRAHM J M. Comparative evaluation of binary features[C]. Proceedings of the 12th European Conference on Computer Vision, Florence, Italy: ECCV, 2012: 759-773.

    [12] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

    [13] BAY H, ESS A, TUYTELAARS T, et al.. SURF: speeded up robust features[J]. Computer Vision and Image Understanding, 2008, bf 110(3): 346-359.

    [14] KE Y, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors[C]. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: CVPR, 2004: 506-513.

    [15] YAN X J, ZHAO CH X, YUAN X. 2DPCA-SIFT: an efficient local feature descriptors[J]. Acta Automatica Sinica, 2014, 40(4): 675-682. (in Chinese)

    [16] TOLA E, LEPETIT V, FUA P. DAISY: an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830.

    [17] ZENG L, GU D L. A SIFT feature descriptor based on sector area partitioning[J]. Acta Automatica Sinca, 2012, 38(9): 1513-1519. (in Chinese)

    [18] GENG Q T, ZHAO H Y, WANG Y T, et al.. A vehicle logo recognition algorithm based on the improved SIFT feature[J]. Opt. Precision Eng., 2018, 26(5): 1267-1274. (in Chinese)

    [19] TANG Y H, LU H Z, HU M F. Local feature description algorithm based on laplacian[J]. Opt. Precision Eng., 2011, 19(12): 2999-3006. (in Chinese)

    [20] SCHMID C, MOHR R. Local grayvalue invariants for image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(5): 530-535.

    [21] CALONDER M, LEPETIT V, OZUYSAL M, et al.. BRIEF: computing a local binary descriptor very fast[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1281-1298.

    [22] RUBLEE E, RABAUD V, KONOLIGE K, et al.. ORB: an efficient alternative to SIFT or SURF[C]. Proceedings of the 2011 International Conference on Computer Vision. Barcelona Spain: ICCV, 2011: 2564-2571.

    [23] LEUTENEGGER S, CHLI M, SIEGWIET R. BRISK: binary robust invariant scalable keypoints[C]. Proceedings of the 2011 International Conference on Computer Vision. Barcelona, Spain: ICCV, 2011: 2548-2555.

    [24] ALAHI A, ORTIZ R, VANDERGHEYNST P. FREAK: fast retina keypoint[C]. Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island, Providence, USA: CVPR, 2012: 2069-2076.

    [25] TRZCINSKI T, CHRISTOUDIAS M, FUA P, et al.. Boosting binary keypoint descriptors[C]. Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Washington, D.C., USA: CVPR, 2013: 2874-2881.

    [26] BALNTAS V, Tang L, MIKOLAJCZYK K. Binary online learned descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 555-567.

    [27] LIN K, LU J, CHEN C S, et al.. Learning compact binary descriptors with unsupervised deep neural networks[C]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA: CVPR, 2016: 1183-1192.

    [28] ZIEBA M, SEMBERECKI P, EI-GAALY T, et al.. BinGAN: learning compact binary descriptors with a regularized GAN[C]. Proceedings of the 2018 Conference on Neural Information Processing Systems, Montreal, Canada: NIPS, 2018: 3608-3618.

    [29] DUAN Y Q, LU J W, WANG Z W, et al.. Learning deep binary descriptor with multi-quantization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(8): 1924-1938.

    [30] HUI G B, LI D B, TONG Y F. A binary descriptor based on both optimized sampling pattern and image sub-patches[J]. Acta Automatica Sinica, 2014, 40(2): 255-266. (in Chinese)

    [31] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.

    CLP Journals

    [1] YUE Juan, GAO Si-li, LI Fan-ming, CAI Neng-bin. Fast image matching algorithm with approximate ane and scale invariance[J]. Optics and Precision Engineering, 2020, 28(10): 2349

    [2] YUE Juan, GAO Si-li, LI Fan-ming, CAI Neng-bin. Fast image matching algorithm with approximate ane and scale invariance[J]. Optics and Precision Engineering, 2020, 28(10): 2349

    [3] Hanhan XU, Yinhui ZHANG, Zifen HE, Jiacen LIU, Zhenhui LI, Lin WU, Benjie SHI. Pseudo-label confidence regulates semi-supervised semantic segmentation of pathological images of colorectal cancer[J]. Optics and Precision Engineering, 2025, 33(4): 591

    [4] Kan Wang, Jun Gong, Jinghe Wei, Ce Zhu, Kai Liu. Euclidean 3D reconstruction based on structure from motion of matching adjacent images[J]. Infrared and Laser Engineering, 2020, 49(6): 20200078