[1] I. C. L. Ng, S. Y. L. Wakenshaw. The internet-of-things: review and research directions. Int. J. Res. Market., 34, 3(2017). https://doi.org/10.1016/j.ijresmar.2016.11.003
[2] D. J. Moss et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597(2013). https://doi.org/10.1038/nphoton.2013.183
[3] Z. Zhu, S. Liu. Digitalized Analog Integrated Circuits(2023).
[4] B. Hoefflinger. ITRS: the international technology roadmap for semiconductors. Chips 2020: A Guide to the Future of Nanoelectronics, 161-174(2011).
[5] R. Osgood, X. Meng. Principles of Photonic Integrated Circuits(2021).
[6] X. Xu et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44(2021). https://doi.org/10.1038/s41586-020-03063-0
[7] B. Corcoran et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun., 11, 2568(2020). https://doi.org/10.1038/s41467-020-16265-x
[8] E. A. Rank et al. Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings. Light Sci. Appl., 10, 6(2021). https://doi.org/10.1038/s41377-020-00450-0
[9] Y. Liu et al. 11-GHz-bandwidth photonic radar using MHz electronics. Laser Photonics Rev., 16, 2100549(2022). https://doi.org/10.1002/lpor.202100549
[10] M. S. Luchansky et al. Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads. Lab Chip, 11, 2042(2011). https://doi.org/10.1039/c1lc20231f
[11] B. Zhang et al. Femtosecond laser modification of 6H-SiC crystals for waveguide devices. Appl. Phys. Lett., 116, 111903(2020). https://doi.org/10.1063/1.5145025
[12] X.-L. Zhang et al. Non-Abelian braiding on photonic chips. Nat. Photonics, 16, 390(2022). https://doi.org/10.1038/s41566-022-00976-2
[13] L. B. Soldano. Multimode Interference Couplers: Design and Applications(1996).
[14] H. Saghaei, P. Elyasi, R. Karimzadeh. Design, fabrication, and characterization of Mach–Zehnder interferometers. Photon. Nanostruct., 37, 100733(2019). https://doi.org/10.1016/j.photonics.2019.100733
[15] N. Li et al. Integrated lasers on silicon at communication wavelength: a progress review. Adv. Opt. Mater., 10, 2201008(2022). https://doi.org/10.1002/adom.202201008
[16] X. Wang et al. Recent advances on optical vortex generation. Nanophotonics, 7, 1533(2018). https://doi.org/10.1515/nanoph-2018-0072
[17] J. Wu et al. RF photonics: an optical microcombs’ perspective. IEEE J. Sel. Top. Quantum Electron., 24, 1(2018). https://doi.org/10.1109/JSTQE.2018.2805814
[18] K. Bachmann. Properties, preparation, and device applications of indium phosphide. Annu. Rev. Mater. Sci., 11, 441(1981). https://doi.org/10.1146/annurev.ms.11.080181.002301
[19] K. D. Hakkel et al. Integrated near-infrared spectral sensing. Nat. Commun., 13, 103(2022). https://doi.org/10.1038/s41467-021-27662-1
[20] H. Ye, J. Yu. Germanium epitaxy on silicon. Sci. Technol. Adv. Mater., 15, 024601(2014). https://doi.org/10.1088/1468-6996/15/2/024601
[21] C. Xiang, J. E. Bowers. Building 3D integrated circuits with electronics and photonics. Nat. Electron., 7, 422(2024). https://doi.org/1
[22] S. J. B. Yoo, B. Guan, R. P. Scott. Heterogeneous 2D/3D photonic integrated microsystems. Microsyst. Nanoeng., 2, 16030(2016). https://doi.org/10.1038/micronano.2016.30
[23] N. Sherwood-Droz, M. Lipson. Scalable 3D dense integration of photonics on bulk silicon. Opt. Express, 19, 17758(2011). https://doi.org/10.1364/OE.19.017758
[24] S. Noda et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 289, 604(2000). https://doi.org/10.1126/science.289.5479.604
[25] D. Tan et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv. Photonics, 3, 024002(2021). https://doi.org/10.1117/1.AP.3.2.024002
[26] S. M. Eaton, G. Cerullo, R. Osellame. Fundamentals of femtosecond laser modification of bulk dielectrics. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, 3-18(2011).
[27] Z. Gan et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun., 4, 2061(2013). https://doi.org/10.1038/ncomms3061
[28] L. Jia et al. Fabrication technologies for the on-chip integration of 2D materials. Small Methods, 6, 2101435(2022). https://doi.org/10.1002/smtd.202101435
[29] J. Wu et al. 2D graphene oxide films expand functionality of photonic chips. Adv. Mater., 36, 2403659(2024). https://doi.org/10.1002/adma.202403659
[30] Y. Zhang et al. Advanced optical polarizers based on 2D materials. npj Nanophotonics, 1, 28(2024). https://doi.org/10.1038/s44310-024-00028-3
[31] Y. Wang et al. Monolithic 2D perovskites enabled artificial photonic synapses for neuromorphic vision sensors. Adv. Mater., 36, 2311524(2024). https://doi.org/10.1002/adma.202311524
[32] C. Wu et al. Freeform direct-write and rewritable photonic integrated circuits in phase-change thin films. Sci. Adv., 10, eadk1361(2024). https://doi.org/10.1126/sciadv.adk1361
[33] J. L. Digaum et al. Tight control of light beams in photonic crystals with spatially-variant lattice orientation. Opt. Express, 22, 25788(2014). https://doi.org/10.1364/OE.22.025788
[34] Y. Yang et al. Graphene metamaterial 3D conformal coating for enhanced light harvesting. ACS Nano, 17, 2611(2023). https://doi.org/10.1021/acsnano.2c10529
[35] A. W. Schell et al. Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures. Sci. Rep., 3, 1577(2013). https://doi.org/10.1038/srep01577
[36] M. Blaicher et al. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography. Light Sci. Appl., 9, 71(2020). https://doi.org/10.1038/s41377-020-0272-5
[37] B. Zhang, L. Wang, F. Chen. Recent advances in femtosecond laser processing of LiNbO(3) crystals for photonic applications. Laser Photonics Rev., 14, 1900407(2020). https://doi.org/10.1002/lpor.201900407
[38] Y.-K. Sun et al. Non-Abelian Thouless pumping in photonic waveguides. Nat. Phys., 18, 1080(2022). https://doi.org/10.1038/s41567-022-01669-x
[39] B. Zhang et al. Self-organized phase-transition lithography for all-inorganic photonic textures. Light Sci. Appl., 10, 93(2021). https://doi.org/10.1038/s41377-021-00534-5
[40] D. Tan, B. Zhang, J. Qiu. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications. Laser Photon. Rev., 15, 2000455(2021). https://doi.org/10.1002/lpor.202000455
[41] X. Chen et al. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl. Phys. Lett., 107, 141102(2015). https://doi.org/10.1063/1.4932199
[42] L. Q. Li, W. J. Kong, F. Chen. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances. Adv. Photonics, 4, 024002(2022). https://doi.org/10.1117/1.AP.4.2.024002
[43] D. Yuan et al. Large-scale laser nanopatterning of multiband tunable mid-infrared metasurface absorber. Adv. Opt. Mater., 10, 2200939(2022). https://doi.org/10.1002/adom.202200939
[44] K. Sun et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science, 375, 307(2022). https://doi.org/10.1126/science.abj2691
[45] S.-F. Liu et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science, 377, 1112(2022). https://doi.org/10.1126/science.abo5345
[46] Y. Lei et al. Ultrafast laser nanostructuring in transparent materials for beam shaping and data storage Invited. Opt. Mater. Express, 12, 3327(2022). https://doi.org/10.1364/OME.463151
[47] C. Cai, J. Wang. Femtosecond laser-fabricated photonic chips for optical communications: a review. Micromachines, 13, 630(2022). https://doi.org/10.3390/mi13040630
[48] F. Yu et al. General rules governing the dynamical encircling of an arbitrary number of exceptional points. Phys. Rev. Lett., 127, 253901(2021). https://doi.org/10.1103/PhysRevLett.127.253901
[49] Y. Jia, S. Wang, F. Chen. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron. Adv., 3, 190042(2020). https://doi.org/10.29026/oea.2020.190042
[50] S. Gross, M. J. Withford. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics, 4, 332(2015). https://doi.org/10.1515/nanoph-2015-0020
[51] S. Juodkazis, V. Mizeikis, H. Misawa. Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications. J. Appl. Phys., 106, 051101(2009). https://doi.org/10.1063/1.3216462
[52] K. Sugioka et al. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip, 14, 3447(2014). https://doi.org/10.1039/C4LC00548A
[53] M. Gu. Advanced Optical Imaging Theory(2000).
[54] Y. Lei et al. Efficient ultrafast laser writing with elliptical polarization. Light Sci. Appl., 12, 74(2023). https://doi.org/10.1038/s41377-023-01098-2
[55] H. Lin, B. Jia, M. Gu. Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam. Opt. Lett., 36, 2471(2011). https://doi.org/10.1364/OL.36.002471
[56] X. Hao et al. Continuous manipulation of doughnut focal spot in a large scale. Opt. Express, 20, 12692(2012). https://doi.org/10.1364/OE.20.012692
[57] B. Zhang et al. Femtosecond laser inscribed novel polarization beam splitters based on tailored waveguide configurations. J. Lightwave Technol., 39, 1438(2021). https://doi.org/10.1109/JLT.2020.3038438
[58] X. Chen et al. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides. Opt. Lett., 41, 2410(2016). https://doi.org/10.1364/OL.41.002410
[59] J. Imbrock et al. Waveguide-integrated three-dimensional quasi-phase-matching structures. Optica, 7, 28(2020). https://doi.org/10.1364/OPTICA.7.000028
[60] Z. Li et al. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber. Opt. Express, 27, 8727(2019). https://doi.org/10.1364/OE.27.008727
[61] E. Kifle et al. Femtosecond-laser-written Ho:KGd(WO4)(2) waveguide laser at 2.1 mu m. Opt. Lett., 44, 1738(2019). https://doi.org/10.1364/OL.44.001738
[62] Y. Jia et al. Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers. Opt. Express, 27, 30941(2019). https://doi.org/10.1364/OE.27.030941
[63] S.-L. Li et al. Femtosecond laser inscribed cladding waveguide structures in LiNbO3 crystal for beam splitters. Opt. Eng., 57, 117103(2018). https://doi.org/10.1117/1.OE.57.11.117103
[64] J. G. Ajates et al. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides. Opt. Mater. Express, 8, 1890(2018). https://doi.org/10.1364/OME.8.001890
[65] J. Lv et al. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal. J. Lightwave Technol., 34, 3587(2016). https://doi.org/10.1109/JLT.2016.2573841
[66] J. Lv et al. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal. Opt. Mater. Express, 5, 1274(2015). https://doi.org/10.1364/OME.5.001274
[67] Z. Huang et al. Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses. Opt. Lett., 35, 877(2010). https://doi.org/10.1364/OL.35.000877
[68] S. Zhang et al. Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses. Appl. Phys. Lett., 92, 231106(2008). https://doi.org/10.1063/1.2945275
[69] J. Thomas et al. Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate. Appl. Phys. Lett., 91, 151108(2007). https://doi.org/10.1063/1.2799178
[70] B. Zhang et al. Mode tailoring of laser written waveguides in LiNbO3 crystals by multi-scan of femtosecond laser pulses. Opt. Mater., 86, 571(2018). https://doi.org/10.1016/j.optmat.2018.11.001
[71] W. Liu et al. Observation of edge-to-edge topological transport in a photonic lattice. Phys. Rev. A, 105, L061502(2022). https://doi.org/10.1103/PhysRevA.105.L061502
[72] C. Wu et al. Observation of topological pumping of a defect state in a Fock photonic lattice. Phys. Rev. A, 107, 033501(2023). https://doi.org/10.1103/PhysRevA.107.033501
[73] W. Liu et al. Floquet parity-time symmetry in integrated photonics. Nat. Commun., 15, 946(2024). https://doi.org/10.1038/s41467-024-45226-x
[74] J. Wu et al. 2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics. Small, 16, e1906563(2020). https://doi.org/10.1002/smll.201906563
[75] Y. Okawachi et al. Chip-based self-referencing using integrated lithium niobate waveguides. Optica, 7, 702(2020). https://doi.org/10.1364/OPTICA.392363
[76] S. Bhardwaj et al. Inscription of type I and depressed cladding waveguides in lithium niobate using a femtosecond laser. Appl. Opt., 56, 5692(2017). https://doi.org/10.1364/AO.56.005692
[77] Allan W. Snyder, J. D. Love. Optical Waveguide Theory(1983).
[78] A. Zinaoui et al. Broadband and widely tunable second harmonic generation in suspended thin-film LiNbO3 rib waveguides. APL Photonics, 9, 101303(2024). https://doi.org/10.1063/5.0230481
[79] J.-Y. Chen et al. Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics. OSA Continuum, 1, 229(2018). https://doi.org/10.1364/OSAC.1.000229
[80] F. Chen, J. R. Vazquez de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond- laser micromachining. Laser Photonics Rev., 8, 251(2014). https://doi.org/10.1002/lpor.201300025
[81] K. Sugioka, Y. Cheng. Femtosecond laser three-dimensional micro- and nanofabrication. Appl. Phys. Rev., 1, 041303(2014). https://doi.org/10.1063/1.4904320
[82] S. O’Halloran et al. Two-photon polymerization: fundamentals, materials, and chemical modification strategies. Adv. Sci., 10, e2204072(2023). https://doi.org/10.1002/advs.202204072
[83] N. Lindenmann et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express, 20, 17667(2012). https://doi.org/10.1364/OE.20.017667
[84] T. Calmano, S. Müller. Crystalline waveguide lasers in the visible and near-infrared spectral range. IEEE J. Sel. Top. Quantum Electron., 21, 401(2015). https://doi.org/10.1109/JSTQE.2014.2350022
[85] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2, 219(2008). https://doi.org/10.1038/nphoton.2008.47
[86] L. R. Hilden, K. R. Morris. Physics of amorphous solids. J. Pharm. Sci., 93, 3(2004). https://doi.org/10.1002/jps.10489
[87] B. Wu et al. Recoverable and rewritable waveguide beam splitters fabricated by tailored femtosecond laser writing of lithium tantalate crystal. Opt. Laser Technol., 145, 107500(2022). https://doi.org/10.1016/j.optlastec.2021.107500
[88] F. Chen, J. R. V. de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev., 8, 251(2014). https://doi.org/10.1002/lpor.201300025
[89] K. R. Matthias Heinrich, Stefan Nolte. Femtosecond Laser Micromachining. Waveguides in Crystalline Materials(2012).
[90] J. Qi et al. Fabrication of polarization-independent single-mode waveguides in lithium niobate crystal with femtosecond laser pulses. Opt. Mater. Express, 6, 2554(2016). https://doi.org/10.1364/OME.6.002554
[91] J.-P. Berube et al. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire. Opt. Lett., 44, 37(2019). https://doi.org/10.1364/OL.44.000037
[92] L. Li et al. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications. Sci. Rep., 7, 7034(2017). https://doi.org/10.1038/s41598-017-07587-w
[93] A. Rodenas et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photonics, 13, 105(2019). https://doi.org/10.1038/s41566-018-0327-9
[94] W. Zhou et al. Fabrication of microlens array on chalcogenide glass by wet etching-assisted femtosecond laser direct writing. Ceram. Int., 48, 18983(2022). https://doi.org/10.1016/j.ceramint.2022.03.181
[95] J. Lv et al. Three-dimensional polarization-dependent full-wavelength beam splitter written by femtosecond laser in LiNbO3 crystal. Opt. Express, 32, 26858(2024). https://doi.org/10.1364/OE.531431
[96] Z.-Z. Li et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci. Appl., 9, 41(2020). https://doi.org/10.1038/s41377-020-0275-2
[97] R. Mary et al. Compact, highly efficient ytterbium doped bismuthate glass waveguide laser. Opt. Lett., 37, 1691(2012). https://doi.org/10.1364/OL.37.001691
[98] E. Nitiss et al. All-organic electro-optic waveguide modulator comprising SU-8 and nonlinear optical polymer. Opt. Express, 25, 31036(2017). https://doi.org/10.1364/OE.25.031036
[99] J. B. Spring et al. On-chip low loss heralded source of pure single photons. Opt. Express, 21, 13522(2013). https://doi.org/10.1364/OE.21.013522
[100] W. Yuan et al. Fabrication of microlens array and its application: a review. Chin. J. Mech. Eng., 31, 16(2018). https://doi.org/10.1186/s10033-018-0204-y
[101] T. Gissibl et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics, 10, 554(2016). https://doi.org/10.1038/nphoton.2016.121
[102] S. Thiele et al. 3D-printed eagle eye: Compound microlens system for foveated imaging. Sci. Adv., 3, e1602655(2017). https://doi.org/10.1126/sciadv.1602655
[103] P. I. Dietrich et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photonics, 12, 241(2018). https://doi.org/10.1038/s41566-018-0133-4
[104] Y. Xu et al. 3D-printed facet-attached microlenses for advanced photonic system assembly. Light Adv. Manuf., 4, 1(2023). https://doi.org/10.37188/lam.2023.003
[105] K. W. Ro et al. Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis. Anal. Chem., 77, 5160(2005). https://doi.org/10.1021/ac050420c
[106] C. Lim et al. Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning. Appl. Phys. Lett., 89, 191125(2006). https://doi.org/10.1063/1.2374809
[107] P. Yager et al. Microfluidic diagnostic technologies for global public health. Nature, 442, 412(2006). https://doi.org/10.1038/nature05064
[108] A. Akatay, H. Urey. Design and optimization of microlens array based high resolution beam steering system. Opt. Express, 4523(2007). https://doi.org/10.1364/OE.15.004523
[109] S. Park et al. Fabricaton of poly (dimethylsiloxane) microlens for laser-induced fluorescence detection. Jpn. J. Appl. Phys., 45, 5614(2006). https://doi.org/10.1143/JJAP.45.5614
[110] K. Bang et al. Lenslet VR: thin, flat and wide-FOV virtual reality display using Fresnel lens and lenslet array. IEEE Trans. Vis. Comput. Graph., 27, 2545(2021). https://doi.org/10.1109/TVCG.2021.3067758
[111] H. Hamam. A two-way optical interconnection network using a single mode fiber array. Opt. Commun., 150, 270(1998). https://doi.org/10.1016/S0030-4018(98)00058-3
[112] J.-C. Roulet et al. Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection. J. Microelectromech. Syst., 10, 482(2001). https://doi.org/10.1109/84.967369
[113] K.-H. Jeong, J. Kim, L. P. Lee. Biologically inspired artificial compound eyes. Science, 312, 557(2006). https://doi.org/10.1126/science.1123053
[114] Y. M. Song et al. Digital cameras with designs inspired by the arthropod eye. Nature, 497, 95(2013). https://doi.org/10.1038/nature12083
[115] D. Wu et al. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging. Adv. Opt. Mater., 2, 751(2014). https://doi.org/10.1002/adom.201400175
[116] N. Ong, Y. Koh, Y. Q. Fu. Microlens array produced using hot embossing process. Microelectron. Eng., 60, 365(2002). https://doi.org/10.1016/S0167-9317(01)00695-5
[117] M. Oikawa et al. Array of distributed-index planar micro-lenses prepared from ion exchange technique. Jpn. J. Appl. Phys., 20, L296(1981). https://doi.org/10.1143/JJAP.20.L296
[118] C.-P. Lin, H. Yang, C.-K. Chao. Hexagonal microlens array modeling and fabrication using a thermal reflow process. J. Micromech. Microeng., 13, 775(2003). https://doi.org/10.1088/0960-1317/13/5/333
[119] N. F. Borrelli, D. L. Morse. Microlens arrays produced by a photolytic technique. Appl. Opt., 27, 476(1988). https://doi.org/10.1364/AO.27.000476
[120] T. Shiono et al. Rectangular-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography. Appl. Opt., 26, 587(1987). https://doi.org/10.1364/AO.26.000587
[121] C.-H. Lin et al. Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing. Appl. Phys. A, 97, 751(2009). https://doi.org/10.1007/s00339-009-5350-8
[122] V. Bardinal et al. Fabrication and characterization of microlens arrays using a cantilever-based spotter. Opt. Express, 15, 6900(2007). https://doi.org/10.1364/OE.15.006900
[123] K. Lee et al. Self-assembly of amorphous calcium carbonate microlens arrays. Nat. Commun., 3, 725(2012). https://doi.org/10.1038/ncomms1720
[124] F. Chen et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Opt. Express, 18, 20334(2010). https://doi.org/10.1364/OE.18.020334
[125] S. Mihailov, S. Lazare. Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon. Appl. Opt., 32, 6211(1993). https://doi.org/10.1364/AO.32.006211
[126] M. Fritze, M. Stern, P. Wyatt. Laser-fabricated glass microlens arrays. Opt. Lett., 23, 141(1998). https://doi.org/10.1364/OL.23.000141
[127] J. Yong et al. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser. ACS Appl. Mater. Interfaces, 5, 9382(2013). https://doi.org/10.1021/am402923t
[128] C. Zheng et al. Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging. Small, 11, 3007(2015). https://doi.org/10.1002/smll.201403419
[129] S. Luan et al. High-speed, large-area and high-precision fabrication of aspheric micro-lens array based on 12-bit direct laser writing lithography. Light Adv. Manuf., 3, 11(2022).
[130] Z.-Y. Hu et al. Miniature optoelectronic compound eye camera. Nat. Commun., 13, 5634(2022). https://doi.org/10.1038/s41467-022-33072-8
[131] M. Ams et al. Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses. Nanophotonics, 6, 743(2017). https://doi.org/10.1515/nanoph-2016-0119
[132] S. Gross et al. Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN. Opt. Lett., 37, 3999(2012). https://doi.org/10.1364/OL.37.003999
[133] H. Zhang, S. M. Eaton, P. R. Herman. Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser. Opt. Lett., 32, 2559(2007). https://doi.org/10.1364/OL.32.002559
[134] G. D. Marshall, M. Ams, M. J. Withford. Direct laser written waveguide-Bragg gratings in bulk fused silica. Opt. Lett., 31, 2690(2006). https://doi.org/10.1364/OL.31.002690
[135] S. Kroesen et al. Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing. Opt. Express, 22, 23339(2014). https://doi.org/10.1364/OE.22.023339
[136] M. Birnbaum. Semiconductor surface damage produced by ruby lasers. J. Appl. Phys., 36, 3688(1965). https://doi.org/10.1063/1.1703071
[137] X. Xu et al. Formation and evolution of micro/nano periodic ripples on 2205 stainless steel machined by femtosecond laser. Micromachines, 14, 428(2023). https://doi.org/10.3390/mi14020428
[138] K. M. T. Ahmmed, C. Grambow, A.-M. Kietzig. Fabrication of micro/nano structures on metals by femtosecond laser micromachining. Micromachines, 5, 1219(2014). https://doi.org/10.3390/mi5041219
[139] A. Y. Vorobyev, C. Guo. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev., 7, 385(2013). https://doi.org/10.1002/lpor.201200017
[140] J. Bonse, S. Gräf. Maxwell meets Marangoni—a review of theories on laser-induced periodic surface structures. Laser Photonics Rev., 14, 2000215(2020). https://doi.org/10.1002/lpor.202000215
[141] Y. Li et al. Uniform deep-subwavelength ripples produced on temperature controlled LiNbO3:Fe crystal surface via femtosecond laser ablation. Appl. Surf. Sci., 478, 779(2019). https://doi.org/10.1016/j.apsusc.2019.02.037
[142] Q. Li et al. Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating. Photonics Res., 6, 789(2018). https://doi.org/10.1364/PRJ.6.000789
[143] D. Zhu et al. Fabrication and applications of surface micro/nanostructures by femtosecond laser. Colloid Interface Sci., 59, 100770(2024). https://doi.org/10.1016/j.colcom.2024.100770
[144] J. D. Joannopoulos et al. Molding the flow of light(2008).
[145] M. J. Ventura, M. Straub, M. Gu. Planar cavity modes in void channel polymer photonic crystals. Opt. Express, 13, 2767(2005). https://doi.org/10.1364/OPEX.13.002767
[146] I. Anghel et al. Femtosecond laser ablation of TiO2 films for two-dimensional photonic crystals. Opt. Laser Technol., 52, 65(2013). https://doi.org/10.1016/j.optlastec.2013.04.020
[147] G. Zhou et al. Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer. Opt. Express, 13, 4390(2005). https://doi.org/10.1364/OPEX.13.004390
[148] G. Zhou, M. Gu. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal. Opt. Lett., 31, 2783(2006). https://doi.org/10.1364/OL.31.002783
[149] M. Deubel et al. 3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing. Opt. Lett., 31, 805(2006). https://doi.org/10.1364/OL.31.000805
[150] M. D. Turner et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics, 7, 801(2013). https://doi.org/10.1038/nphoton.2013.233
[151] B. Jia et al. Highly non-linear quantum dot doped nanocomposites for functional three-dimensional structures generated by two-photon polymerization. Adv. Mater., 22, 2463(2010). https://doi.org/10.1002/adma.201000513
[152] M. Gu et al. Fabrication of three-dimensional photonic crystals in quantum-dot-based materials. Laser Photonics Rev., 4, 414(2010). https://doi.org/10.1002/lpor.200910008
[153] N. Tétreault et al. New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates. Adv. Mater., 18, 457(2006). https://doi.org/10.1002/adma.200501674
[154] Y. Zhang et al. Nonlinear photonic crystals: from 2D to 3D. Optica, 8, 372(2021). https://doi.org/10.1364/OPTICA.416619
[155] D. Wei et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nat. Commun., 10, 4193(2019). https://doi.org/10.1038/s41467-019-12251-0
[156] P. Chen et al. Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal. Light Sci. Appl., 10, 146(2021). https://doi.org/10.1038/s41377-021-00588-5
[157] S. Liu et al. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals. Nat. Commun., 10, 3208(2019). https://doi.org/10.1038/s41467-019-11114-y
[158] M. Shao et al. Pushing periodic-disorder-induced phase matching into the deep-ultraviolet spectral region: theory and demonstration. Light Sci. Appl., 9, 45(2020). https://doi.org/10.1038/s41377-020-0281-4
[159] M. Shao et al. Angular engineering strategy of an additional periodic phase for widely tunable phase-matched deep-ultraviolet second harmonic generation. Light Sci. Appl., 11, 31(2022). https://doi.org/10.1038/s41377-022-00715-w
[160] D. Wei et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics, 12, 596(2018). https://doi.org/10.1038/s41566-018-0240-2
[161] T. Xu et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photonics, 12, 591(2018). https://doi.org/10.1038/s41566-018-0225-1
[162] S. Liu et al. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals. Nat. Commun., 10, 3208(2019). https://doi.org/10.1038/s41467-019-11114-y
[163] X. Xu et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature, 609, 496(2022). https://doi.org/10.1038/s41586-022-05042-z
[164] J. Imbrock et al. Local domain inversion in MgO-doped lithium niobate by pyroelectric field-assisted femtosecond laser lithography. Appl. Phys. Lett., 113, 252901(2018). https://doi.org/10.1063/1.5053870
[165] T. Xu et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photonics, 12, 590(2018). https://doi.org/10.1038/s41566-018-0225-1
[166] D. Wei et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics, 12, 596(2018). https://doi.org/10.1038/s41566-018-0240-2
[167] D. G. Lancaster et al. Efficient 2.9 µm fluorozirconate glass waveguide chip laser. Opt. Lett., 38, 2588(2013). https://doi.org/10.1364/OL.38.002588
[168] G.-L. Roth et al. Polymer photonic crystal waveguides generated by femtosecond laser. Laser Photonics Rev., 15, 2100215(2021). https://doi.org/10.1002/lpor.202100215
[169] H. Lin et al. Chalcogenide glass-on-graphene photonics. Nat. Photonics, 11, 798(2017). https://doi.org/10.1038/s41566-017-0033-z
[170] X. Wang et al. A spectrally tunable all-graphene-based flexible field-effect light-emitting device. Nat. Commun., 6, 7767(2015). https://doi.org/10.1038/ncomms8767
[171] J. Xing et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano, 10, 6623(2016). https://doi.org/10.1021/acsnano.6b01540
[172] Y. Zhao et al. Double-key optical information encryption enabled by multi-state excitation–emission of Mn-doped metal chlorides. Adv. Opt. Mater., 11, 2301349(2023). https://doi.org/10.1002/adom.202301349
[173] G. J. Choi et al. Polarized light-emitting diodes based on patterned MoS2 nanosheet hole transport layer. Adv. Mater., 29, 1702598(2017). https://doi.org/10.1002/adma.201702598
[174] Y. Q. Bie et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol., 12, 1124(2017). https://doi.org/10.1038/nnano.2017.209
[175] C. Chen et al. Widely tunable mid-infrared light emission in thin-film black phosphorus. Sci. Adv., 6, eaay6134(2020). https://doi.org/10.1126/sciadv.aay6134
[176] F. Xia et al. Ultrafast graphene photodetector. Nat. Nanotechnol., 4, 839(2009). https://doi.org/10.1038/nnano.2009.292
[177] Y. Cao et al. Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions. Small, 10, 2345(2014). https://doi.org/10.1002/smll.201303339
[178] W. Zheng et al. Vacuum-ultraviolet photodetection in few-layered h-BN. ACS Appl. Mater. Interfaces, 10, 27116(2018). https://doi.org/10.1021/acsami.8b07189
[179] Q. Liang et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater., 31, e1807609(2019). https://doi.org/10.1002/adma.201807609
[180] H. Yuan et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol., 10, 707(2015). https://doi.org/10.1038/nnano.2015.112
[181] J. Wu et al. Graphene oxide waveguide and micro-ring resonator polarizers. Laser Photonics Rev., 13, 1900056(2019). https://doi.org/10.1002/lpor.201900056
[182] S. Sathiyan et al. Evolution of the polarizing effect of MoS2. IEEE Photonics J., 7, 1(2015). https://doi.org/10.1109/JPHOT.2015.2499543
[183] W. Shen et al. Wavelength tunable polarizer based on layered black phosphorus on Si/SiO2 substrate. Opt. Lett., 43, 1255(2018). https://doi.org/10.1364/OL.43.001255
[184] G. Li et al. Terahertz polarizers based on 2D Ti3C2Tz MXene: spin cast from aqueous suspensions. Adv. Photonics Res., 1, 2000084(2020). https://doi.org/10.1002/adpr.202000084
[185] T. Gu et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics, 6, 554(2012). https://doi.org/10.1038/nphoton.2012.147
[186] Y. Zhang et al. Enhanced Kerr nonlinearity and nonlinear figure of merit in silicon nanowires integrated with 2D graphene oxide films. ACS Appl. Mater. Interfaces, 12, 33094(2020). https://doi.org/10.1021/acsami.0c07852
[187] L. Liu et al. Enhanced optical Kerr nonlinearity of MoS_2 on silicon waveguides. Photonics Res., 3, 206(2015). https://doi.org/10.1364/PRJ.3.000206
[188] T. K. Fryett et al. Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2. 2D Mater., 4, 015031(2016). https://doi.org/10.1088/2053-1583/4/1/015031
[189] S. Park et al. Electrically focus-tuneable ultrathin lens for high-resolution square subpixels. Light Sci. Appl., 9, 98(2020). https://doi.org/10.1038/s41377-020-0329-5
[190] X. Zheng et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun., 6, 8433(2015). https://doi.org/10.1038/ncomms9433
[191] H. Lin et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light Sci. Appl., 9, 137(2020). https://doi.org/10.1038/s41377-020-00374-9
[192] J. van de Groep et al. Exciton resonance tuning of an atomically thin lens. Nat. Photonics, 14, 426(2020). https://doi.org/10.1038/s41566-020-0624-y
[193] Z. Wang et al. Flat lenses based on 2D perovskite nanosheets. Adv. Mater., 32, 2001388(2020). https://doi.org/10.1002/adma.202001388
[194] S. Yuhang et al. Direct laser writing on halide perovskites: from mechanisms to applications. Light Adv. Manuf., 4, 95(2024). https://doi.org/10.37188/lam.2024.004
[195] H. Lin et al. Engineering van der Waals materials for advanced metaphotonics. Chem. Rev., 122, 15204(2022). https://doi.org/10.1021/acs.chemrev.2c00048
[196] J. Wu et al. Graphene oxide for photonics, electronics and optoelectronics. Nat. Rev. Chem., 7, 162(2023). https://doi.org/10.1038/s41570-022-00458-7
[197] X. Zheng et al. Laser trimming of graphene oxide for functional photonic applications. J. Phys. D Appl. Phys., 50, 074003(2017). https://doi.org/10.1088/1361-6463/aa54e9
[198] T. Yang, H. Lin, B. Jia. Two-dimensional material functional devices enabled by direct laser fabrication. Front. Optoelectron., 11, 2(2017). https://doi.org/10.1007/s12200-017-0753-1
[199] J. Wu et al. Graphene oxide for integrated photonics and flat optics. Adv. Mater., 33, 2006415(2021). https://doi.org/10.1002/adma.202006415
[200] D. W. Li et al. In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene. Nanoscale, 7, 3651(2015). https://doi.org/10.1039/C4NR07078J
[201] Y. Zhou et al. Microstructuring of graphene oxide nanosheets using direct laser writing. Adv. Mater., 22, 67(2010). https://doi.org/10.1002/adma.200901942
[202] S. Huang et al. Self-limiting opto-electrochemical thinning of transition-metal dichalcogenides. ACS Appl. Mater. Interfaces, 13, 58966(2021). https://doi.org/10.1021/acsami.1c19163
[203] J. Aumanen et al. Patterning and tuning of electrical and optical properties of graphene by laser induced two-photon oxidation. Nanoscale, 7, 2851(2015). https://doi.org/10.1039/C4NR05207B
[204] S. Cho et al. Phase patterning for ohmic homojunction contact in MoTe2. Science, 349, 625(2015). https://doi.org/10.1126/science.aab3175
[205] E. Kim et al. Site selective doping of ultrathin metal dichalcogenides by laser-assisted reaction. Adv. Mater., 28, 341(2016). https://doi.org/10.1002/adma.201503945
[206] T. Afaneh et al. Laser-assisted chemical modification of monolayer transition metal dichalcogenides. Adv. Funct. Mater., 28, 1802949(2018). https://doi.org/10.1002/adfm.201802949
[207] J. Lu et al. Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano, 9, 10411(2015). https://doi.org/10.1021/acsnano.5b04623
[208] J. Chen et al. High-performance WSe2 photodetector based on a laser-induced p-n junction. ACS Appl. Mater. Interfaces, 11, 43330(2019). https://doi.org/10.1021/acsami.9b13948
[209] Y. Kang et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater., 26, 6467(2014). https://doi.org/10.1002/adma.201401802
[210] V. Shautsova et al. Direct laser patterning and phase transformation of 2D PdSe2 films for on-demand device fabrication. ACS Nano, 13, 14162(2019). https://doi.org/10.1021/acsnano.9b06892
[211] S. Hou et al. Localized emission from laser-irradiated defects in 2D hexagonal boron nitride. 2D Mater., 5, 015010(2018). https://doi.org/10.1088/2053-1583/aa8e61
[212] R. Buividas et al. Photoluminescence from voids created by femtosecond-laser pulses inside cubic-BN. Opt. Lett., 40, 5711(2015). https://doi.org/10.1364/OL.40.005711
[213] Y.-Z. Yang et al. Laser direct writing of visible spin defects in hexagonal boron nitride for applications in spin-based technologies. ACS Appl. Nano Mater., 6, 6407(2023). https://doi.org/10.1021/acsanm.3c01047
[214] X. Gao et al. Femtosecond laser writing of spin defects in hexagonal boron nitride. ACS Photonics, 8, 994(2021). https://doi.org/10.1021/acsphotonics.0c01847
[215] Y. Yang et al. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photonics, 6, 1033(2019). https://doi.org/10.1021/acsphotonics.9b00060
[216] R. Sahin, E. Simsek, S. Akturk. Nanoscale patterning of graphene through femtosecond laser ablation. Appl. Phys. Lett., 104, 053118(2014). https://doi.org/10.1063/1.4864616
[217] H. Lin et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics, 13, 270(2019). https://doi.org/10.1038/s41566-019-0389-3
[218] M. J. Low et al. Laser-induced reduced-graphene-oxide micro-optics patterned by femtosecond laser direct writing. Appl. Surf. Sci., 526, 146647(2020). https://doi.org/10.1016/j.apsusc.2020.146647
[219] L. Lin et al. Optothermoplasmonic nanolithography for on-demANd Patterning of 2D materials. Adv. Funct. Mater., 28, 1803990(2018). https://doi.org/10.1002/adfm.201803990
[220] G. Cao et al. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments. ACS Appl. Mater. Interfaces, 11, 20298(2019). https://doi.org/10.1021/acsami.9b05109
[221] Y. Zhang et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 5, 15(2010). https://doi.org/10.1016/j.nantod.2009.12.009
[222] Q. Li et al. Femtosecond laser-etched MXene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections. Adv. Energy Mater., 10, 2000470(2020). https://doi.org/10.1002/aenm.202000470
[223] W. Zhan et al. In situ patterning perovskite quantum dots by direct laser writing fabrication. ACS Photonics, 8, 765(2021). https://doi.org/10.1021/acsphotonics.1c00118
[224] A. Cupo et al. Periodic arrays of phosphorene nanopores as antidot lattices with tunable properties. ACS Nano, 11, 7494(2017). https://doi.org/10.1021/acsnano.7b04031
[225] M. G. Stanford et al. Tungsten diselenide patterning and nanoribbon formation by gas-assisted focused-helium-ion-beam-induced etching. Small Methods, 1, 1600060(2017). https://doi.org/10.1002/smtd.201600060
[226] X. Zheng et al. Free-standing graphene oxide mid-infrared polarizers. Nanoscale(2020). https://doi.org/10.1039/D0NR01619E
[227] F. Mooshammer et al. Enabling waveguide optics in rhombohedral-stacked transition metal dichalcogenides with laser-patterned grating couplers. ACS Nano, 18, 4118(2024). https://doi.org/10.1021/acsnano.3c08522
[228] X. Zheng et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun., 6, 1(2015). https://doi.org/10.1038/ncomms9433
[229] G. Cao et al. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron. Adv., 1, 18001201(2018). https://doi.org/10.29026/oea.2018.180012
[230] S. Wei et al. High tolerance detour-phase graphene-oxide flat lens. Photonics Res., 9, 2454(2021). https://doi.org/10.1364/PRJ.434599
[231] H. Wang et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron. Adv., 4, 200031-1(2021). https://doi.org/10.29026/oea.2021.200031
[232] Z. Jin et al. Broadband angular momentum cascade via a multifocal graphene vortex generator. Chin. Opt. Lett., 20, 103602(2022). https://doi.org/10.3788/COL202220.103602
[233] X. Li et al. Graphene metalens for particle nanotracking. Photonics Res., 8, 1316(2020). https://doi.org/10.1364/PRJ.397262
[234] G. Cao, H. Lin, B. Jia. Broadband diffractive graphene orbital angular momentum metalens by laser nanoprinting. Ultrafast Sci., 3, 0018(2023). https://doi.org/10.34133/ultrafastscience.0018
[235] G. Cao et al. Design of a dynamic multi-topological charge graphene orbital angular momentum metalens. Opt. Express, 31, 2102(2023). https://doi.org/10.1364/OE.480946
[236] S. Wei et al. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano, 15, 4769(2021). https://doi.org/10.1021/acsnano.0c09395
[237] J. Chen et al. P-type laser-doped WSe2/MoTe2 van der Waals heterostructure photodetector. Nanotechnology, 31, 295201(2020). https://doi.org/10.1088/1361-6528/ab87cd
[238] S. Mukherjee et al. Scalable integration of coplanar heterojunction monolithic devices on two-dimensional In2Se3. ACS Nano, 14, 17543(2020). https://doi.org/10.1021/acsnano.0c08146
[239] T. Zou et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light Sci. Appl., 9, 69(2020). https://doi.org/10.1038/s41377-020-0311-2
[240] X. Tian et al. Triangular micro-grating via femtosecond laser direct writing toward high-performance polarization-sensitive perovskite photodetectors. Adv. Opt. Mater., 10, 2200856(2022). https://doi.org/10.1002/adom.202200856
[241] J. Yan et al. Self-powered SnSe photodetectors fabricated by ultrafast laser. Nano Energy, 97, 107188(2022). https://doi.org/10.1016/j.nanoen.2022.107188
[242] P. Roldan-Varona, L. Rodriguez-Cobo, J. M. Lopez-Higuera. Slit beam shaping technique for femtosecond laser inscription of symmetric cladding waveguides. IEEE J. Sel. Top. Quantum Electron., 27, 1(2021). https://doi.org/10.1109/JSTQE.2021.3092438
[243] Y. Cheng et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt. Lett., 28, 55(2003). https://doi.org/10.1364/OL.28.000055
[244] G. Cerullo et al. Femtosecond micromachining of symmetric waveguides at 1.5 mum by astigmatic beam focusing. Opt. Lett., 27, 1938(2002). https://doi.org/10.1364/OL.27.001938
[245] R. Osellame et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B: Opt. Phys., 20, 1559(2003). https://doi.org/10.1364/JOSAB.20.001559
[246] F. He et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt. Lett., 35, 1106(2010). https://doi.org/10.1364/OL.35.001106
[247] P. Wang et al. Aberration-insensitive three-dimensional micromachining in glass with spatiotemporally shaped femtosecond laser pulses. Opt. Lett., 43, 3485(2018). https://doi.org/10.1364/OL.43.003485
[248] R. R. Thomson et al. Shaping ultrafast laser inscribed optical waveguides using a deformable mirror. Opt. Express, 16, 12786(2008). https://doi.org/10.1364/OE.16.012786
[249] Z.-Z. Li et al. Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses. Opt. Lett., 46, 520(2021). https://doi.org/10.1364/OL.414962
[250] Q. Zhang et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photonics Res., 7, 503(2019). https://doi.org/10.1364/PRJ.7.000503
[251] Q. Zhang et al. Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering. Opt. Express, 25, 13263(2017). https://doi.org/10.1364/OE.25.013263
[252] P. Wang et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing. Sci. Rep., 7, 41211(2017). https://doi.org/10.1038/srep41211
[253] W. Yang et al. Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing. Opt. Express, 16, 16215(2008). https://doi.org/10.1364/OE.16.016215
[254] Y. Zhang et al. The fabrication of circular cross-section waveguide in two dimensions with a dynamical slit. Laser Phys., 19, 2236(2009). https://doi.org/10.1134/S1054660X0923008X
[255] X. Xu et al. Slit beam shaping for femtosecond laser point-by- point inscription of high-quality fiber Bragg gratings. J. Lightwave Technol., 39, 5142(2021). https://doi.org/10.1109/JLT.2021.3082566
[256] X. Wang et al. Curved waveguides in silicon written by a shaped laser beam. Opt. Express, 29, 14201(2021). https://doi.org/10.1364/OE.419074
[257] R. Kammel et al. Simultaneous spatial and temporal focusing: a route towards confined nonlinear materials processing. Proc. SPIE, 9736, 97360T(2016). https://doi.org/10.1117/12.2209540
[258] W. Chu et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization. Adv. Mater. Technol., 3, 1700396(2018). https://doi.org/10.1002/admt.201700396
[259] N. Ganguly, P. Sopeña, D. Grojo. Ultra-high-aspect-ratio structures through silicon using infrared laser pulses focused with axicon-lens doublets. Light Adv. Manuf., 5, 22(2024). https://doi.org/10.37188/lam.2024.022
[260] P. S. Salter, M. J. Booth. Adaptive optics in laser processing. Light Sci. Appl., 8, 110(2019). https://doi.org/10.1038/s41377-019-0215-1
[261] P. S. Salter et al. Adaptive slit beam shaping for direct laser written waveguides. Opt. Lett., 37, 470(2012). https://doi.org/10.1364/OL.37.000470
[262] D. Liu et al. Dynamic laser beam shaping for material processing using hybrid holograms. Opt. Laser Technol., 102, 68(2018). https://doi.org/10.1016/j.optlastec.2017.12.022
[263] M. Duocastella, C. B. Arnold. Bessel and annular beams for materials processing. Laser Photonics Rev., 6, 607(2012). https://doi.org/10.1002/lpor.201100031
[264] M. K. Bhuyan et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl. Phys. Lett., 97, 081102(2010). https://doi.org/10.1063/1.3479419
[265] M. Manousidaki et al. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica, 3, 525(2016). https://doi.org/10.1364/OPTICA.3.000525
[266] J. Cheng et al. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device. Opt. Lett., 40, 4875(2015). https://doi.org/10.1364/OL.40.004875
[267] Y. Guo et al. High-resolution femtosecond laser beam shaping via digital holography. Opt. Lett., 44, 987(2019). https://doi.org/10.1364/OL.44.000987
[268] H.-H. Hsiao, C. H. Chu, D. Tsai. Fundamentals and applications of metasurfaces. Small Methods, 1, 1600064(2017). https://doi.org/10.1002/smtd.201600064
[269] Q. Zhang et al. Diffractive optical elements 75 years on: from micro-optics to metasurfaces. Photon. Insights, 2, R09(2023). https://doi.org/10.3788/PI.2023.R09
[270] L. Chen et al. Shaping polarization within an ultrafast laser pulse using dielectric metasurfaces. Optica, 10, 26(2023). https://doi.org/10.1364/OPTICA.471040
[271] L. Chen et al. Synthesizing ultrafast optical pulses with arbitrary spatiotemporal control. Sci. Adv., 8, eabq8314(2022). https://doi.org/10.1126/sciadv.abq8314
[272] S. Qiao et al. Fine optimization of aberration compensation for stealth dicing. Opt. Laser Technol., 174, 110668(2024). https://doi.org/10.1016/j.optlastec.2024.110668
[273] R. D. Simmonds et al. Three dimensional laser microfabrication in diamond using a dual adaptive optics system. Opt. Express, 19, 24122(2011). https://doi.org/10.1364/OE.19.024122
[274] C. Mauclair et al. Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction. Opt. Express, 16, 5481(2008). https://doi.org/10.1364/OE.16.005481
[275] B. P. Cumming et al. Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass. Opt. Express, 22, 689(2014). https://doi.org/10.1364/OE.22.000689
[276] E. Jia et al. Two-photon polymerization of femtosecond high-order Bessel beams with aberration correction. Chin. Opt. Lett., 21, 071203(2023). https://doi.org/10.3788/COL202321.071203
[277] X. Wang et al. Femtosecond laser processing with aberration correction based on Shack-Hartmann wavefront sensor. Opt. Lasers Eng., 184, 108693(2025). https://doi.org/10.1016/j.optlaseng.2024.108693
[278] S. Hasegawa, Y. Hayasaki. Femtosecond laser processing with adaptive optics based on convolutional neural network. Opt. Lasers Eng., 141, 106563(2021). https://doi.org/10.1016/j.optlaseng.2021.106563
[279] C. Qiao et al. Deep learning-based optical aberration estimation enables offline digital adaptive optics and super-resolution imaging. Photonics Res., 12, 474(2024). https://doi.org/10.1364/PRJ.506778
[280] H. Yu et al. Neuron-inspired Steiner tree networks for 3D low-density metastructures. Adv. Sci., 8, 2100141(2021). https://doi.org/10.1002/advs.202100141
[281] Q. Wang et al. Two-photon nanolithography of micrometer scale diffractive neural network with cubical diffraction neurons at the visible wavelength. Chin. Opt. Lett., 22, 102201(2024). https://doi.org/10.3788/COL202422.102201
[282] F. Formanek et al. Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures. Appl. Phys. Lett., 88, 083110(2006). https://doi.org/10.1063/1.2178261
[283] J.-I. Kato et al. Multiple-spot parallel processing for laser micronanofabrication. Appl. Phys. Lett., 86, 044102(2005). https://doi.org/10.1063/1.1855404
[284] S. Matsuo, S. Juodkazis, H. Misawa. Femtosecond laser microfabrication of periodic structures using a microlens array. Appl. Phys. A, 80, 683(2005). https://doi.org/10.1007/s00339-004-3108-x
[285] F. Zhang et al. Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam. Opt. Express, 26, 34016(2018). https://doi.org/10.1364/OE.26.034016
[286] H. Lin, M. Gu. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam. Appl. Phys. Lett., 102, 084103(2013). https://doi.org/10.1063/1.4794030
[287] M. Gu, H. Lin, X. Li. Parallel multiphoton microscopy with cylindrically polarized multifocal arrays. Opt. Lett., 38, 3627(2013). https://doi.org/10.1364/OL.38.003627
[288] H. Lin, B. Jia, M. Gu. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt. Lett., 36, 406(2011). https://doi.org/10.1364/OL.36.000406
[289] F. Su et al. Fabrication of cylindrical microlens array on RB-SiC moulds by precision grinding with MAWJ-textured diamond wheels. Appl. Sci., 12, 6893(2022). https://doi.org/10.3390/app12146893
[290] W. Liu et al. Observation of optical tunneling inhibition by a parabolic potential in twisted photonic lattices. Phys. Rev. Res., 4, L012043(2022). https://doi.org/10.1103/PhysRevResearch.4.L012043
[291] N. Lindenmann et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. J. Lightwave Technol., 33, 755(2015). https://doi.org/10.1109/JLT.2014.2373051
[292] M. R. Billah et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 5, 876(2018). https://doi.org/10.1364/OPTICA.5.000876
[293] Y. Xu et al. Hybrid external-cavity lasers (ECL) using photonic wire bonds as coupling elements. Sci. Rep., 11, 16426(2021). https://doi.org/10.1038/s41598-021-95981-w
[294] S. J. Chowdhury et al. On-chip hybrid integration of swept frequency distributed-feedback laser with silicon photonic circuits using photonic wire bonding. Opt. Express, 32, 3085(2024). https://doi.org/10.1364/OE.510036
[295] Y. Ma et al. Photonic convolution accelerator based on a hybrid integrated multi-wavelength laser array by photonic wire bonding for real-time image classification. Opt. Lett., 49, 2629(2024). https://doi.org/10.1364/OL.518837
[296] X. Yilin et al. 3D-printed facet-attached microlenses for advanced photonic system assembly. Light Adv. Manuf., 4, 17(2023). https://doi.org/10.37188/lam.2023.003
[297] H. Luo et al. Low-loss and broadband fiber-to-chip coupler by 3D fabrication on a silicon photonic platform. Opt. Lett., 45, 1236(2020). https://doi.org/10.1364/OL.386550
[298] L. Ranno et al. Highly efficient fiber to Si waveguide free-form coupler for foundry-scale silicon photonics. Photonics Res., 12, 1055(2024). https://doi.org/10.1364/PRJ.514999
[299] R. R. Thomson et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt. Express, 15, 11691(2007). https://doi.org/10.1364/OE.15.011691
[300] G. Djogo et al. Femtosecond laser additive and subtractive micro-processing: enabling a high-channel-density silica interposer for multicore fibre to silicon-photonic packaging. Int. J. Extreme Manuf., 1, 045002(2019). https://doi.org/10.1088/2631-7990/ab4d51
[301] M. Schumann et al. Hybrid 2D–3D optical devices for integrated optics by direct laser writing. Light Sci. Appl., 3, e175(2014). https://doi.org/10.1038/lsa.2014.56
[302] Y. Meng et al. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater., 8, 498(2023). https://doi.org/10.1038/s41578-023-00558-w
[303] S. Yang et al. Gate dielectrics integration for 2D electronics: challenges, advances, and outlook. Adv. Mater., 35, 2207901(2023). https://doi.org/10.1002/adma.202207901
[304] N. Negm et al. Graphene thermal infrared emitters integrated into silicon photonic waveguides. ACS Photonics, 11, 2961(2024). https://doi.org/10.1021/acsphotonics.3c01892
[305] Y. Ding et al. Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator. Nano Lett., 15, 4393(2015). https://doi.org/10.1021/acs.nanolett.5b00630
[306] L. Huang et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano, 13, 913(2019). https://doi.org/10.1021/acsnano.8b08758
[307] K. Chen et al. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat. Photonics, 13, 754(2019). https://doi.org/10.1038/s41566-019-0492-5
[308] Y. Zuo et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat. Nanotechnol., 15, 987(2020). https://doi.org/10.1038/s41565-020-0770-x
[309] M. Prechtl et al. Hybrid devices by selective and conformal deposition of PtSe2 at low temperatures. Adv. Function. Mater., 31, 2103936(2021). https://doi.org/10.1002/adfm.202103936
[310] R. K. Iler. Multilayers of colloidal particles. J. Colloid Interface Sci., 21, 569(1966). https://doi.org/10.1016/0095-8522(66)90018-3
[311] E. Kharlampieva et al. Hydrogen-bonded multilayers of thermoresponsive polymers. Macromolecules, 38, 10523(2005). https://doi.org/10.1021/ma0516891
[312] M. M. de Villiers et al. Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv. Drug Delivery Rev., 63, 701(2011). https://doi.org/10.1016/j.addr.2011.05.011
[313] C. Xiang et al. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun., 12, 6650(2021). https://doi.org/10.1038/s41467-021-26804-9
[314] M. Yu et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature, 612, 252(2022). https://doi.org/10.1038/s41586-022-05345-1
[315] H. Liu et al. Femtosecond laser inscribed Y-branch waveguide in Nd:YAG Crystal: fabrication and continuous-wave lasing. IEEE J. Sel. Top. Quantum Electron., 22, 227(2016). https://doi.org/10.1109/JSTQE.2015.2439191
[316] W. Nie et al. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing. Opt. Lett., 41, 2169(2016). https://doi.org/10.1364/OL.41.002169
[317] X. Dong et al. 1.8-um laser operation based on femtosecond-laser direct written Tm:YVO4 cladding waveguides. Opt. Express, 31, 16560(2023). https://doi.org/10.1364/OE.487296
[318] Y. Jia, F. Chen. Compact solid-state waveguide lasers operating in the pulsed regime: a review. Chin. Opt. Lett., 17, 012302(2019). https://doi.org/10.3788/COL201917.012302
[319] Z. Li et al. Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure. Photonics Res., 5, 406(2017). https://doi.org/10.1364/PRJ.5.000406
[320] Z. Li et al. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber. Opt. Express, 27, 8727(2019). https://doi.org/10.1364/OE.27.008727
[321] Z. Li et al. Invited Article: mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber. APL Photonics, 3(2018). https://doi.org/10.1063/1.5032243
[322] Q. Ma et al. Recent advances on hybrid integration of 2D materials on integrated optics platforms. Nanophotonics, 9, 2191(2020). https://doi.org/10.1515/nanoph-2019-0565
[323] W. Horn et al. Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing. Opt. Express, 20, 26922(2012). https://doi.org/10.1364/OE.20.026922
[324] C.-Y. Wang, J. Gao, X.-M. Jin. On-chip rotated polarization directional coupler fabricated by femtosecond laser direct writing. Opt. Lett., 44, 102(2019). https://doi.org/10.1364/OL.44.000102
[325] J. Thomas et al. Laser direct writing: enabling monolithic and hybrid integrated solutions on the lithium niobate platform. Phys. Status Solidi, 208, 276(2011). https://doi.org/10.1002/pssa.201026452
[326] D. A. Presti et al. Intensity modulator fabricated in LiNbO3 by femtosecond laser writing. Opt. Lasers Eng., 111, 222(2018). https://doi.org/10.1016/j.optlaseng.2018.08.015
[327] S. Kroesen et al. Electro–optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing. Opt. Express, 22, 23339(2014). https://doi.org/10.1364/OE.22.023339
[328] Z. Fang et al. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator. Opt. Lett., 44, 1214(2019). https://doi.org/10.1364/OL.44.001214
[329] C. Liao et al. High-speed all-optical modulator based on a polymer nanofiber bragg grating printed by femtosecond laser. ACS Appl. Mater. Interfaces, 12, 1465(2020). https://doi.org/10.1021/acsami.9b16716
[330] P. G. Marques et al. Thermo-optical attenuator fabricated through direct UV laser writing in organic-inorganic hybrids(2012).
[331] J. Burghoff et al. Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate. Appl. Phys. Lett., 89, 081108(2006). https://doi.org/10.1063/1.2338532
[332] B. Zhang et al. Second harmonic generation in femtosecond laser written lithium niobate waveguides based on birefringent phase matching. Opt. Mater., 107, 110075(2020). https://doi.org/10.1016/j.optmat.2020.110075
[333] J. Lin et al. Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl., 6, 014002(2016). https://doi.org/10.1103/PhysRevApplied.6.014002
[334] R. Wu et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116(2018). https://doi.org/10.1364/OL.43.004116
[335] J. Thomas et al. Femtosecond laser-written quasi-phase-matched waveguides in lithium niobite. Appl. Phys. Lett., 91, 151108(2007). https://doi.org/10.1063/1.2799178
[336] B. Zhang et al. Frequency doubling in PPLN depressed-cladding waveguides written by femtosecond laser. Opt. Mater., 125, 112074(2022). https://doi.org/10.1016/j.optmat.2022.112074
[337] L. A. Fernandes et al. Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica. Opt. Express, 19, 11992(2011). https://doi.org/10.1364/OE.19.011992
[338] N. Riesen et al. Femtosecond direct-written integrated mode couplers. Opt. Express, 22, 29855(2014). https://doi.org/10.1364/OE.22.029855
[339] R. R. Thomson et al. Ultrafast laser inscription of an integrated photonic lantern. Opt. Express, 19, 5698(2011). https://doi.org/10.1364/OE.19.005698
[340] R. R. Thomson et al. Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics. Opt. Lett., 2331(2012). https://doi.org/10.1364/OL.37.002331
[341] G. D. Marshall et al. Laser written waveguide photonic quantum circuits. Opt. Express, 17, 12546(2009). https://doi.org/10.1364/OE.17.012546
[342] T. Meany et al. Hybrid photonic circuit for multiplexed heralded single photons. Laser Photonics Rev., 8, L42(2014). https://doi.org/10.1002/lpor.201400027
[343] C. Antón et al. Interfacing scalable photonic platforms: solid-state based multi-photon interference in a reconfigurable glass chi. Optica, 6, 1471(2019). https://doi.org/10.1364/OPTICA.6.001471
[344] G. Bulgarini et al. Avalanche amplification of a single exciton in a semiconductor nanowire. Nat. Photonics, 6, 455(2012). https://doi.org/10.1038/nphoton.2012.110
[345] S. J. U. White et al. Electrical control of quantum emitters in a Van der Waals heterostructure. Light Sci. Appl., 11, 186(2022). https://doi.org/10.1038/s41377-022-00877-7
[346] M. Koperski et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol., 10, 503(2015). https://doi.org/10.1038/nnano.2015.67
[347] Y.-C. Chen et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica, 6, 662(2019). https://doi.org/10.1364/OPTICA.6.000662
[348] P. Vergyris et al. On-chip generation of heralded photon-number states. Sci. Rep., 6, 35975(2016). https://doi.org/10.1038/srep35975
[349] G. Noh et al. Stark tuning of single-photon emitters in hexagonal boron nitride. Nano Lett., 18, 4710(2018). https://doi.org/10.1021/acs.nanolett.8b01030
[350] Q. Zhang et al. Femtosecond laser direct writing of an integrated path-encoded CNOT quantum gate. Opt. Mater. Express, 9, 2318(2019). https://doi.org/10.1364/OME.9.002318
[351] X. Hou et al. Waveguide-coupled superconducting nanowire single-photon detectors based on femtosecond laser direct writing. Opt. Express, 29, 7746(2021). https://doi.org/10.1364/OE.419724
[352] A. Crespi et al. Integrated photonic quantum gates for polarization qubits. Nat. Commun., 2, 566(2011). https://doi.org/10.1038/ncomms1570
[353] N. N. Skryabin et al. Two-qubit quantum photonic processor manufactured by femtosecond laser writing. Appl. Phys Lett., 122, 121102(2023). https://doi.org/10.1063/5.0137728
[354] A. Seri et al. Laser-written integrated platform for quantum storage of heralded single photons. Optica, 5, 934(2018). https://doi.org/10.1364/OPTICA.5.000934
[355] T.-X. Zhu et al. Coherent optical memory based on a laser-written on-chip waveguide. Phys. Rev. Appl., 14, 054071(2020). https://doi.org/10.1103/PhysRevApplied.14.054071
[356] C. Liu et al. On-demand quantum storage of photonic qubits in an on-chip waveguide. Phys. Rev. Lett., 125, 260504(2020). https://doi.org/10.1103/PhysRevLett.125.260504
[357] T.-X. Zhu et al. Integrated spin-wave quantum memory. Nat. Sci. Rev., 11, nwae161(2024). https://doi.org/10.1093/nsr/nwae161
[358] D.-C. Liu et al. On-demand storage of photonic qubits at telecom wavelengths. Phys. Rev. Lett., 129, 210501(2022). https://doi.org/10.1103/PhysRevLett.129.210501
[359] X. Zhang et al. Telecom-band–integrated multimode photonic quantum memory. Sci. Adv., 9, eadf4587(2023). https://doi.org/10.1126/sciadv.adf4587
[360] W. H. P. Pernice et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun., 3, 1325(2012). https://doi.org/10.1038/ncomms2307
[361] G. Corrielli, A. Crespi, R. Osellame. Femtosecond laser micromachining for integrated quantum photonics. Nanophotonics, 10, 3789(2021). https://doi.org/10.1515/nanoph-2021-0419
[362] M. K. Akhlaghi, E. Schelew, J. F. Young. Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation. Nat. Commun., 6, 8233(2015). https://doi.org/10.1038/ncomms9233
[363] B. Korzh et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics, 14, 250(2020). https://doi.org/10.1038/s41566-020-0589-x
[364] O. Kahl et al. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths. Sci. Rep., 5, 10941(2015). https://doi.org/10.1038/srep10941
[365] R. Cheng et al. Broadband on-chip single-photon spectrometer. Nat. Commun., 10, 4104(2019). https://doi.org/10.1038/s41467-019-12149-x
[366] M. A. Wolff et al. Superconducting nanowire single-photon detectors integrated with tantalum pentoxide waveguides. Sci. Rep., 10, 17170(2020). https://doi.org/10.1038/s41598-020-74426-w
[367] M. Protte et al. Laser-lithographically written micron-wide superconducting nanowire single-photon detectors. Supercond. Sci. Technol., 35, 055005(2022). https://doi.org/10.1088/1361-6668/ac5338
[368] R. Heilmann et al. Harnessing click detectors for the genuine characterization of light states. Sci. Rep., 6, 19489(2016). https://doi.org/10.1038/srep19489
[369] Y. Bellouard et al. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express, 12, 2120(2004). https://doi.org/10.1364/OPEX.12.002120
[370] C. Hnatovsky et al. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. Opt. Lett., 30, 1867(2005). https://doi.org/10.1364/OL.30.001867
[371] Y. Liao et al. Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt. Lett., 35, 3225(2010). https://doi.org/10.1364/OL.35.003225
[372] Y. Liao et al. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Lab Chip, 13, 1626(2013). https://doi.org/10.1039/c3lc41171k
[373] M. Kim et al. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip, 9, 311(2009). https://doi.org/10.1039/B808366E
[374] A. Schaap, T. Rohrlack, Y. Bellouard. Optical classification of algae species with a glass lab-on-a-chip. Lab Chip, 12, 1527(2012). https://doi.org/10.1039/c2lc21091f
[375] A. Crespi et al. Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip, 10, 1167(2010). https://doi.org/10.1039/b920062b
[376] D. Zhang, H. Wei, S. Krishnaswamy. 3D printing optofluidic mach-zehnder interferometer on a fiber tip for refractive index sensing. IEEE Photon. Technol. Lett., 31, 1725(2019). https://doi.org/10.1109/LPT.2019.2943897
[377] Q. Liu et al. Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B, 188, 681(2013). https://doi.org/10.1016/j.snb.2013.07.053
[378] M. I. Lapsley et al. A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection. Lab Chip, 11, 1795(2011). https://doi.org/10.1039/c0lc00707b
[379] X. Cao et al. A counter propagating lens-mirror system for ultrahigh throughput single droplet detection. Small, 16, 1907534(2020). https://doi.org/10.1002/smll.201907534
[380] J. Tang et al. A 3D-cascade-microlens optofluidic chip for refractometry with adjustable sensitivity. Lab Chip, 21, 3784(2021). https://doi.org/10.1039/D1LC00570G
[381] Y. Wu et al. Ultraspecific and highly sensitive nucleic acid detection by integrating a DNA catalytic network with a label-free microcavity. Small, 10, 2067(2014). https://doi.org/10.1002/smll.201303558
[382] L. Cai et al. Whispering gallery mode optical microresonators: structures and sensing applications. Phys. Status Solidi, 217, 1900825(2020). https://doi.org/10.1002/pssa.202070022
[383] G. Serafino et al. Photonic approach for on-board and ground radars in automotive applications. IET Radar Sonar Navig., 12, 1179(2018). https://doi.org/10.1049/iet-rsn.2018.5017
[384] H. Matsumoto et al. Integrated terahertz radar based on leaky-wave coherence tomography. Nat. Electron., 3, 122(2020). https://doi.org/10.1038/s41928-019-0357-4
[385] S. De, A. A. Bazil Raj. A survey on photonics technologies for radar applications. J. Opt., 52, 90(2023). https://doi.org/10.1007/s12596-022-00897-x
[386] S. Li et al. Chip-based microwave-photonic radar for high-resolution imaging. Laser Photonics Rev., 14, 1900239(2020). https://doi.org/10.1002/lpor.201900239
[387] P. Trocha et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887(2018). https://doi.org/10.1126/science.aao3924
[388] N. Li et al. A progress review on solid-state LiDAR and nanophotonics-based LiDAR sensors. Laser Photonics Rev., 16, 2100511(2022). https://doi.org/10.1002/lpor.202100511
[389] J. Sun et al. Large-scale nanophotonic phased array. Nature, 493, 195(2013). https://doi.org/10.1038/nature11727
[390] E.-S. Lee et al. Frequency response of thermo-optic phase modulators based on fluorinated polyimide polymer waveguide. Polymers, 14, 2186(2022). https://doi.org/10.3390/polym14112186
[391] E.-S. Lee et al. High-performance optical phased array for LiDARs demonstrated by monolithic integration of polymer and SiN waveguides. Opt. Express, 31, 28112(2023). https://doi.org/10.1364/OE.499868
[392] L. Huang et al. Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces. Nat. Commun., 13, 5823(2022). https://doi.org/10.1038/s41467-022-33644-8
[393] A. Pattantyus-Abraham, J. Krahn, C. Menon. Recent advances in nanostructured biomimetic dry adhesives. Front. Bioeng. Biotechnol., 1, 1(2013). https://doi.org/10.3389/fbioe.2013.00022
[394] A. Grabulosa et al. Additive 3D photonic integration that is CMOS compatible. Nanotechnology, 34, 322002(2023). https://doi.org/10.1088/1361-6528/acd0b5
[395] H. Yi et al. Antenna-in-package (AiP) using through-polymer vias (TPVs) for a 122-GHz radar chip. IEEE Trans. Compon. Packag. Manuf. Technol., 12, 893(2022). https://doi.org/10.1109/TCPMT.2022.3172618
[396] B. Du et al. Super-resolution imaging with direct laser writing-printed microstructures. J. Phys. Chem. A, 124, 7211(2020). https://doi.org/10.1021/acs.jpca.0c05415
[397] N. Jovanovic et al. Astrophotonics roadmap: pathways to realizing multi-functional integrated astrophotonic instruments. J. Phys., 5, 042501(2023). https://doi.org/10.1088/2515-7647/ace869
[398] R. R. Thomson, A. K. Kar, J. Allington-Smith. Ultrafast laser inscription: an enabling technology for astrophotonics. Opt. Express, 17, 1963(2009). https://doi.org/10.1364/OE.17.001963
[399] R. J. Harris et al. Photonic spatial reformatting of stellar light for diffraction-limited spectroscopy. Mon. Not. R. Astron. Soc., 450, 428(2015). https://doi.org/10.1093/mnras/stv410
[400] B. R. M. Norris et al. First on-sky demonstration of an integrated-photonic nulling interferometer: the GLINT instrument. Mon. Not. R. Astron. Soc., 491, 4180(2019). https://doi.org/10.1093/mnras/stz3277
[401] B. J. Shastri et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102(2021). https://doi.org/10.1038/s41566-020-00754-y
[402] Q. Zhang et al. Artificial neural networks enabled by nanophotonics. Light Sci. Appl., 8, 42(2019). https://doi.org/10.1038/s41377-019-0151-0
[403] Z. Cheng et al. On-chip photonic synapse. Sci. Adv., 3, e1700160(2017). https://doi.org/10.1126/sciadv.1700160
[404] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441(2017). https://doi.org/10.1038/nphoton.2017.93
[405] C. Fendler et al. Microscaffolds by direct laser writing for neurite guidance leading to tailor-made neuronal networks. Adv. Biosyst., 3, 1800329(2019). https://doi.org/10.1002/adbi.201800329
[406] P. Dong et al. Silicon photonic devices and integrated circuits. Nanophotonics, 3, 215(2014). https://doi.org/10.1515/nanoph-2013-0023
[407] Y. Qu et al. Enhanced four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films. Adv. Opt. Mater., 8, 2001048(2020). https://doi.org/10.1002/adom.202001048
[408] A. Yi et al. Silicon carbide for integrated photonics. Appl. Phys. Rev., 9, 031302(2022). https://doi.org/10.1063/5.0187924
[409] D. M. Lukin, M. A. Guidry, J. Vučković. Integrated quantum photonics with silicon carbide: challenges and prospects. PRX Quantum, 1, 020102(2020). https://doi.org/10.1103/PRXQuantum.1.020102
[410] A. Nishiguchi et al. In-gel direct laser writing for 3d-designed hydrogel composites that undergo complex self-shaping. Adv. Sci., 5, 1700038(2018). https://doi.org/10.1002/advs.201700038
[411] D. Zhu et al. Direct laser writing breaking diffraction barrier based on two-focus parallel peripheral-photoinhibition lithography. Adv. Photonics, 4, 066002(2022). https://doi.org/10.1117/1.AP.4.6.066002
[412] V. L. Deringer, M. A. Caro, G. Csanyi. Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater., 31, e1902765(2019). https://doi.org/10.1002/adma.201902765
[413] H. Zhang, S. K. Moon. Reviews on machine learning approaches for process optimization in noncontact direct ink writing. ACS Appl. Mater. Interfaces, 13, 53323(2021). https://doi.org/10.1021/acsami.1c04544
[414] F. D. Ince et al. A novel machine learning method for the design optimization of diamond waveguides fabricated by femtosecond laser writing. Opt. Commun., 570, 130872(2024). https://doi.org/10.1016/j.optcom.2024.130872
[415] B. Wang et al. A hybrid machine learning approach to determine the optimal processing window in femtosecond laser-induced periodic nanostructures. J. Mater. Process. Technol., 308, 117716(2022). https://doi.org/10.1016/j.jmatprotec.2022.117716
[416] H. Wahab et al. Machine-learning-assisted fabrication: Bayesian optimization of laser-induced graphene patterning using in-situ Raman analysis. Carbon, 167, 609(2020). https://doi.org/10.1016/j.carbon.2020.05.087
[417] A. W. Elshaari et al. Hybrid integrated quantum photonic circuits. Nat. Photonics, 14, 285(2020). https://doi.org/10.1038/s41566-020-0609-x
[418] K. S. Novoselov et al. 2D materials and van der Waals heterostructures. Science, 353, aac9439(2016). https://doi.org/10.1038/s41377-021-00500-1
[419] Y. Liu et al. Van der Waals heterostructures and devices. Nat. Rev. Mater., 1, 16042(2016). https://doi.org/10.1038/natrevmats.2016.42