• Photonics Research
  • Vol. 12, Issue 10, 2166 (2024)
Paulo S. S. dos Santos1,2, João P. Mendes1, Jorge Pérez-Juste3,4, I. Pastoriza-Santos3,4,*..., José M. M. M. de Almeida1,5 and Luís C. C. Coelho1|Show fewer author(s)
Author Affiliations
  • 1INESC TEC–Institute of Systems and Computer Engineering, Technology and Science, and Department of Physics, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
  • 2Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
  • 3CINBIO, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain
  • 4SERGAS-UVIGO, Galicia Sur Health Research Institute (IIS Galicia Sur), 36312 Vigo, Spain
  • 5Department of Physics, School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
  • show less
    DOI: 10.1364/PRJ.518181 Cite this Article Set citation alerts
    Paulo S. S. dos Santos, João P. Mendes, Jorge Pérez-Juste, I. Pastoriza-Santos, José M. M. M. de Almeida, Luís C. C. Coelho, "From localized to propagating surface plasmon resonances in Au nanoparticle-coated optical fiber sensors and its implications in biosensing," Photonics Res. 12, 2166 (2024) Copy Citation Text show less
    References

    [1] A. K. Sharma, A. Kumar Pandey, B. Kaur. A review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt. Fiber Technol., 43, 20-34(2018).

    [2] M. Bauch, K. Toma, M. Toma. Plasmon-enhanced fluorescence biosensors: a review. Plasmonics, 9, 781-799(2014).

    [3] C. L. Wong, M. Olivo. Surface plasmon resonance imaging sensors: a review. Plasmonics, 9, 809-824(2014).

    [4] H. Malekzad, P. S. Zangabad, H. Mirshekari. Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol. Rev., 6, 301-329(2018).

    [5] H. Lu, Z. Tian, H. Yu. Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing. Opt. Express, 22, 32502-32508(2014).

    [6] P. Sharma, V. Semwal, B. D. Gupta. Highly sensitive and selective localized surface plasmon resonance biosensor for detecting glutamate realized on optical fiber substrate using gold nanoparticles. Photonics Nanostruct., 37, 100730(2019).

    [7] H. Manoharan, D. Kc, V. V. R. Sai. Controlled in situ seed-mediated growth of gold and silver nanoparticles on an optical fiber platform for plasmonic sensing applications. Plasmonics, 15, 51-60(2020).

    [8] H. M. Kim, D. H. Jeong, H. Y. Lee. Improved stability of gold nanoparticles on the optical fiber and their application to refractive index sensor based on localized surface plasmon resonance. Opt. Laser Technol., 114, 171-178(2019).

    [9] B. T. Wang, Q. Wang. Sensitivity-enhanced optical fiber biosensor based on coupling effect between SPR and LSPR. IEEE Sens. J., 18, 8303-8310(2018).

    [10] P. S. S. Dos Santos, J. P. Mendes, B. Dias. Spectral analysis methods for improved resolution and sensitivity: enhancing SPR and LSPR optical fiber sensing. Sensors, 23, 1666(2023).

    [11] L. P. F. Peixoto, J. F. L. Santos, G. F. S. Andrade. Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: a comparative study for two different configurations. Anal. Chim. Acta, 1084, 71-77(2019).

    [12] L. Guo, J. A. Jackman, H. H. Yang. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today, 10, 213-239(2015).

    [13] E. Martinsson, B. Sepulveda, P. Chen. Optimizing the refractive index sensitivity of plasmonically coupled gold nanoparticles. Plasmonics, 9, 773-780(2014).

    [14] Q. Wu, Y. Semenova, P. Wang. High sensitivity SMS fiber structure based refractometer–analysis and experiment. Opt. Express, 19, 7937-7944(2011).

    [15] F. Han, T. Lang, B. Mao. Surface plasmon resonance sensor based on coreless fiber for high sensitivity. Opt. Fiber Technol., 50, 172-176(2019).

    [16] S. Jia, C. Bian, J. Sun. Gold nanospheres-coated LSPR fiber sensor with high RI sensitivity by a rapid fabricating method. NEMS 2018—13th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 523-526(2018).

    [17] P. Nordlander, C. Oubre, E. Prodan. Plasmon hybridization in nanoparticle dimers. Nano Lett., 4, 899-903(2004).

    [18] M. A. Basyooni, A. M. Ahmed, M. Shaban. Plasmonic hybridization between two metallic nanorods. Optik-Stuttgart, 172, 1069-1078(2018).

    [19] E. Prodan, C. Radloff, N. J. Halas. A hybridization model for the plasmon response of complex nanostructures. Science, 302, 419-422(2003).

    [20] H. Zhang, J. Cadusch, C. Kinnear. Direct assembly of large area nanoparticle arrays. ACS Nano, 12, 7529-7537(2018).

    [21] M. Sturaro, G. Zacco, P. Zilio. Gold nanodisks plasmonic array for hydrogen sensing at low temperature. Sensors, 19, 3-9(2019).

    [22] M. Toma, K. Cho, J. B. Wood. Gold nanoring arrays for near infrared plasmonic biosensing. Plasmonics, 9, 765-772(2014).

    [23] J. Jiang, X. Wang, S. Li. Plasmonic nano-arrays for ultrasensitive bio-sensing. Nanophotonics, 7, 1517-1531(2018).

    [24] S. Q. Li, P. Guo, L. Zhang. Infrared plasmonics with indium tin-oxide nanorod arrays. ACS Nano, 5, 9161-9170(2011).

    [25] N. Malikova, I. Pastoriza-Santos, M. Schierhorn. Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions. Langmuir, 18, 3694-3697(2002).

    [26] S. K. Ghosh, T. Pal. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev., 107, 4797-4862(2007).

    [27] C. Fernández-López, M.-M. Cintia, A. Alvarez-Puebla. Highly controlled silica coating of peg-capped metal nanoparticles and preparation of SERS-encoded particles. Langmuir, 25, 13894-13899(2009).

    [28] R. P. M. Höller, C. Kuttner, M. Mayer. Colloidal superstructures with triangular cores: size effects on SERS efficiency. ACS Photonics, 7, 1839-1848(2020).

    [29] E. C. Le Ru, P. G. Etchegoin. Sub-wavelength localization of hot-spots in SERS. Chem. Phys. Lett., 396, 393-397(2004).

    [30] A. B. Evlyukhin, S. I. Bozhevolnyi. Surface plasmon polariton guiding by chains of nanoparticles. Laser Phys. Lett., 3, 396-400(2006).

    [31] P. J. Compaijen, V. A. Malyshev, J. Knoester. Engineering plasmon dispersion relations: hybrid nanoparticle chain-substrate plasmon polaritons. Opt. Express, 23, 2280-2292(2015).

    [32] M. M. Miller, A. A. Lazarides. Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering. J. Opt. A, 8, 21556-21565(2006).

    [33] N. Houngkamhang, S. Charoensuwan, O. Sonthipakdee. Gold-nanoparticle-based fiber optic sensor for sensing the refractive index of environmental solutions. Chiang Mai J. Sci., 45, 2168-2177(2018).

    [34] X. Zhong, L. Ma, G. Yin. Hg2+ optical fiber sensor based on LSPR with PDDA-templated AuNPs and CS/PAA Bilayers. Appl. Sci., 10, 4845(2020).

    [35] M. A. Otte, M. C. Estévez, D. Regatos. Guiding light in monolayers of sparse and random plasmonic meta-atoms. ACS Nano, 5, 9179-9186(2011).

    [36] H. Chen, X. Kou, Z. Yang. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir, 24, 5233-5237(2008).

    [37] S. Jia, C. Bian, J. Sun. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates. Biosens. Bioelectron., 114, 15-21(2018).

    [38] W. Te Wu, C. H. Chen, C. Y. Chiang. Effect of surface coverage of gold nanoparticles on the refractive index sensitivity in fiber-optic nanoplasmonic sensing. Sensors, 18, 1759(2018).

    [39] J. A. García, D. Monzón-Hernández, J. Manríquez. One step method to attach gold nanoparticles onto the surface of an optical fiber used for refractive index sensing. Opt. Mater.-Amsterdam, 51, 208-212(2016).

    [40] M. Lin, M. Lu, Y. Liang. Polyelectrolyte-enhanced localized surface plasmon resonance optical fiber sensors: properties interrogation and bioapplication. ACS Appl. Nano Mater., 5, 6171-6180(2022).

    [41] M. H. Tu, T. Sun, K. T. V. Grattan. Optimization of gold-nanoparticle-based optical fibre surface plasmon resonance (SPR)-based sensors. Sens. Actuators B Chem., 164, 43-53(2012).

    [42] E. Martinsson, M. A. Otte, M. M. Shahjamali. Substrate effect on the refractive index sensitivity of silver nanoparticles. J. Phys. Chem. C, 118, 24680-24687(2014).

    [43] S. M. Marinakos, S. Chen, A. Chilkoti. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal. Chem., 79, 5278-5283(2007).

    [44] Y. Khalavka, J. Becker, C. Sönnichsen. Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J. Am. Chem. Soc., 131, 1871-1875(2009).

    [45] R. Chikkaraddy, J. J. Baumberg. Accessing plasmonic hotspots using nanoparticle-on-foil constructs. ACS Photonics, 8, 2811-2817(2021).

    [46] H. Sugimoto, S. Yashima, M. Fujii. Hybridized plasmonic gap mode of gold nanorod on mirror nanoantenna for spectrally tailored fluorescence enhancement. ACS Photonics, 5, 3421-3427(2018).

    [47] L. Liu, A. V. Krasavin, J. Zheng. Atomically smooth single-crystalline platform for low-loss plasmonic nanocavities. Nano Lett., 22, 1786-1794(2022).

    [48] A. Urrutia, J. Goicoechea, F. J. Arregui. Optical fiber sensors based on nanoparticle-embedded coatings. J. Sens., 2015, 805053(2015).

    [49] Q. Wang, X. Yin, P. Yin. Research progress of resonance optical fiber sensors modified by low-dimensional materials. Laser Photonics Rev., 17, 2200859(2023).

    [50] H. Wang. Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations. Sci. Rep., 8, 9589(2018).

    [51] B. Špačková, M. L. Ermini, J. Homola. High-performance biosensor exploiting a light guidance in sparse arrays of metal nanoparticles. Opt. Lett., 44, 1568-1571(2019).

    [52] V. A. Markel. Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A, 33, 1244-1256(2016).

    [53] U. Hohenester, A. Trügler. MNPBEM—a MATLAB toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun., 183, 370-381(2012).

    [54] A. Egel, K. M. Czajkowski, D. Theobald. SMUTHI: a Python package for the simulation of light scattering by multiple particles near or between planar interfaces.

    [55] M. S. Maurice, N. Barros, H. Kachkachi. Beyond the Maxwell Garnett approximation for interacting plasmonic nanoparticles: an analytical and numerical study. J. Appl. Phys., 134, 094303(2023).

    [56] W. Park. Optical interactions in plasmonic nanostructures. Nano Converg., 1, 2(2014).

    [57] D. Sun, L.-P. Sun, T. Guo. Label-free thrombin detection using a tapered fiber-optic interferometric aptasensor. J. Lightwave Technol., 37, 2756-2761(2019).

    [58] L. Coelho, J. M. M. M. de Almeida, J. L. Santos. Aptamer-based fiber sensor for thrombin detection. J. Biomed. Opt., 21, 087005(2016).

    [59] N. Cennamo, L. Pasquardini, F. Arcadio. D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range. Sci. Rep., 9, 18740(2019).

    [60] T. Ayupova, M. Shaimerdenova, M. Sypabekova. Picomolar detection of thrombin with fiber-optic ball resonator sensor using optical backscatter reflectometry. Optik-Stuttgart, 241, 166969(2021).

    [61] J. Lao, L. Han, Z. Wu. Gold nanoparticle-functionalized surface plasmon resonance optical fiber biosensor: in situ detection of thrombin with 1 nm detection limit. J. Lightwave Technol., 37, 2748-2755(2019).

    [62] K. M. Czajkowski, D. Świtlik, C. Langhammer. Effective optical properties of inhomogeneously distributed nanoobjects in strong field gradients of nanoplasmonic sensors. Plasmonics, 13, 2423-2434(2018).

    [63] R. Ruppin. Evaluation of extended Maxwell-Garnett theories. Opt. Commun., 182, 273-279(2000).

    [64] E. Klantsataya, A. François, H. Ebendorff-Heidepriem. Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing. Sensors, 15, 25090-25102(2000).

    [65] M. C. Navarrete, N. Díaz-Herrera, A. González-Cano. A polarization-independent SPR fiber sensor. Plasmonics, 5, 7-12(2010).

    [66] Y. Zhao, Z.-Q. Deng, Q. Wang. Fiber optic SPR sensor for liquid concentration measurement. Sens. Actuators B Chem., 192, 229-233(2014).

    [67] H. S. Jang, K. N. Park, C. D. Kang. Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen. Opt. Commun., 282, 2827-2830(2009).

    [68] S. Enoch, N. Bonod. Plasmonics—From Basics to Advanced Topics, 167(2012).

    [69] C. M. Danforth, T. Orfeo, S. J. Everse. Defining the boundaries of normal thrombin generation: investigations into hemostasis. PLoS ONE, 7, e30385(2012).

    [70] S. D. Weaver, R. J. Whelan. Characterization of DNA aptamer–protein binding using fluorescence anisotropy assays in low-volume, high-efficiency plates. Anal. Methods, 13, 1302-1307(2021).

    [71] S. Goutelle, M. Maurin, F. Rougier. The Hill equation: a review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol., 22, 633-648(2008).

    [72] N. G. Bastús, J. Comenge, V. Puntes. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles up to 200  nm: size focusing versus Ostwald ripening. Langmuir, 27, 11098-11105(2011).

    [73] M. Yasukawa, O. Sugihara, S. Kobayashi. Launch light dependency of step-index multimode fiber connections analyzed by modal power distribution using encircled angular flux. Appl. Opt., 56, 876-883(2017).

    [74] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370(1972).

    [75] I. H. Malitson. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am., 55, 1205-1209(1965).

    Paulo S. S. dos Santos, João P. Mendes, Jorge Pérez-Juste, I. Pastoriza-Santos, José M. M. M. de Almeida, Luís C. C. Coelho, "From localized to propagating surface plasmon resonances in Au nanoparticle-coated optical fiber sensors and its implications in biosensing," Photonics Res. 12, 2166 (2024)
    Download Citation