• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101009 (2022)
Yicheng Zhou1、2, Zhipeng Qin1、2、*, and Guoqiang Xie1、2、**
Author Affiliations
  • 1School of Physics and Astronomy, Key Laboratory for Laser Plasmas (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/CJL202249.0101009 Cite this Article Set citation alerts
    Yicheng Zhou, Zhipeng Qin, Guoqiang Xie. 2.8-μm Er∶ZBLAN Fiber Soliton Self-Compression Amplifier[J]. Chinese Journal of Lasers, 2022, 49(1): 0101009 Copy Citation Text show less
    References

    [1] Gattass R R, Mazur E.. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).

    [2] Ebrahim-Zadeh M, Helmy A S, Leo G et al. Mid-infrared coherent sources and applications: introduction[J]. Journal of the Optical Society of America B, 38, MIC1(2021).

    [3] Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb[J]. Nature Photonics, 3, 99-102(2009).

    [4] Archipovaite G M, Petit S, Delagnes J C et al. 100 kHz Yb-fiber laser pumped 3 μm optical parametric amplifier for probing solid-state systems in the strong field regime[J]. Optics Letters, 42, 891-894(2017).

    [5] Ma J, Qin Z P, Xie G Q et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm3.5 μm spectral region[J]. Applied Physics Reviews, 6, 021317(2019).

    [6] Liu J, Tan F Z, Liu C et al. Progress on high-power ultrashort-pulsed thulium-doped fiber lasers[J]. Chinese Journal of Lasers, 44, 0201003(2017).

    [7] Dong M, Zheng C T, Miao S Z et al. Development and measurements of a mid-infrared multi-gas sensor system for CO, CO2 and CH4 detection[J]. Sensors (Basel, Switzerland), 17, E2221(2017).

    [8] Nejadmalayeri A H, Herman P R, Burghoff J et al. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses[J]. Optics Letters, 30, 964-966(2005).

    [9] Hudson D D, Antipov S, Li L Z et al. Toward all-fiber supercontinuum spanning the mid-infrared[J]. Optica, 4, 1163-1166(2017).

    [10] Jia Z X, Yao C F, Li Z R et al. Progress on novel high power mid-infrared fiber laser materials and supercontinuum laser[J]. Chinese Journal of Lasers, 46, 0508006(2019).

    [11] Yang L Y, Zhang B, He X et al. 20.6 W mid-infrared supercontinuum generation in ZBLAN fiber with spectrum of 1.94.3 μm[J]. Journal of Lightwave Technology, 38, 5122-5127(2020).

    [12] Liu K, Liang H K, Li W K et al. Microjoule sub-two-cycle mid-infrared intrapulse-DFG driven by 3-μm OPCPA[J]. IEEE Photonics Technology Letters, 31, 1741-1744(2019).

    [13] Pushkin A V, Migal E A, Tokita S et al. Femtosecond graphene mode-locked Fe∶ZnSe laser at 4.4 μm[J]. Optics Letters, 45, 738-741(2020).

    [14] Krogen P, Suchowski H, Liang H K et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses[J]. Nature Photonics, 11, 222-226(2017).

    [15] Nie H K, Ning J, Zhang B T et al. Recent progress of optical-superlattice-based mid-infrared optical parametric oscillators[J]. Chinese Journal of Lasers, 48, 0501008(2021).

    [16] Hu M L, Wang J, Fan J T. Research progress on fiber laser pumped femtosecond optical parametric oscillators[J]. Chinese Journal of Lasers, 48, 1901001(2021).

    [17] Pupeza I, Sánchez D, Zhang J et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate[J]. Nature Photonics, 9, 721-724(2015).

    [18] Li J F, Jackson S D.. Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers[J]. IEEE Journal of Quantum Electronics, 48, 454-464(2012).

    [19] Faucher D, Bernier M, Androz G et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm[J]. Optics Letters, 36, 1104-1106(2011).

    [20] Duval S, Bernier M, Fortin V et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2, 623-636(2015).

    [21] Huang J, Pang M, Jiang X et al. Route from single-pulse to multi-pulse states in a mid-infrared soliton fiber laser[J]. Optics Express, 27, 26392-26404(2019).

    [22] Huang J, Pang M, Jiang X et al. Sub-two-cycle octave-spanning mid-infrared fiber laser[J]. Optica, 7, 574-579(2020).

    [23] Agrawal G P[M]. Nonlinear fiber optics(2013).

    [24] Duval S, Olivier M, Fortin V et al. 23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm[J]. Proceeding of SPIE, 9728, 972802, 9-16(2016).

    [25] Nagl N, Mak K F, Wang Q et al. Efficient femtosecond mid-infrared generation based on a Cr∶ZnS oscillator and step-index fluoride fibers[J]. Optics Letters, 44, 2390-2393(2019).

    [26] Gan F X.. Optical properties of fluoride glasses: a review[J]. Journal of Non-Crystalline Solids, 184, 9-20(1995).

    [27] Agger C, Petersen C, Dupont S et al. Supercontinuum generation in ZBLAN fibers: detailed comparison between measurement and simulation[J]. Journal of the Optical Society of America B, 29, 635-645(2012).

    [28] Smith N J, Blow K J, Andonovic I. Sideband generation through perturbations to the average soliton model[J]. Journal of Lightwave Technology, 10, 1329-1333(1992).

    [29] Duval S, Gauthier J C, Robichaud L R et al. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm[J]. Optics Letters, 41, 5294-5297(2016).

    Yicheng Zhou, Zhipeng Qin, Guoqiang Xie. 2.8-μm Er∶ZBLAN Fiber Soliton Self-Compression Amplifier[J]. Chinese Journal of Lasers, 2022, 49(1): 0101009
    Download Citation