[1] LI J, ZHENG C, YANG Y, et al. Lossless dielectric metasurface with giant intrinsic chirality for terahertz wave[J]. Optics Express, 2021, 29(18): 28329-28337.
[2] VUKUSIC P, SAMBLES J. Photonic structures in biology[J]. Nature 2003, 424: 852-855.
[3] SHARMA V, CRNE M, PARK J O, et al. Structural origin of circularly polarized iridescence in jeweled beetles[J]. Science, 2009,325(24): 405-407.
[4] HONG Q L, XU W, ZHANG J F, et al. Optical activity in monolayer black phosphorus due to extrinsic chirality[J]. Optics Letters, 2019, 44(7): 1774-1777.
[5] YE Y Q, HE S. 90 degrees polarization rotator using a bilayered chiral metamaterial with giant optical activity[J]. Applied Physics Letters, 2010, 96(20): 203501-1-203501-16.
[6] ZHOU J X, WANG Y K, LU M J, et al. Giant enhancement of tunable asymmetric transmission for circularly polarized waves in a double-layer graphene chiral metasurface[J]. RSC Advances, 2019, 9: 33775-33780.
[7] FEDOTOV V A, MLADYONOV P L, PROSVIRNIN S L, et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure [J]. Physical Review Letters, 2006, 97(16): 167401-1-167401-4.
[8] FEDOTOV V A, SCHWANECKE A S, ZHELUDEV N I, et al. Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures[J]. Nano Letters, 2007, 7(7): 1996-1999.
[9] BONACCORSO F, SUN Z, HASAN T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.
[10] HUANG Z, YAO K, SU G X, et al. Graphene-metal hybrid metamaterials for strong and tunable circular dichroism generation[J]. Optics Letters, 2018, 43(11): 2636-2639.
[11] KIM T T, OH S S, KIM H D, et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials[J]. Science Advances, 2017, 3(9): e1701377-1-e1701377-7.
[12] ZHOU S E, LAI P T, DONG G H, et al. Tunable chiroptical response of graphene achiral metamaterials in mid-infrared regime[J]. Optics Express,2019,27(11): 15359-15367.
[13] ZHOU J X, WANG Y K, SANG T, et al. Tunable circular dichroism in a graphene extrinsically chiral L-shaped metasurface[J]. Laser Physics Letters, 2020, 17(12): 126201-1-126201-5.
[14] PLUM E, LIU X X, FEDOTOV V A, et al. Metamaterials: optical activity without chirality[J]. Physics Review Letters, 2009, 102(11): 113902-1-113902-5.
[15] ZHANG Y Y, WANG L, ZHANG Z Y. Circular dichroism in planar achiral plasmonic L-shaped nanostructure arrays[J]. IEEE Photonics Journal, 2017,9(2): 1-7.
[16] PLUM E, FEDOTOV V A, ZHELUDEV N I. Optical activity in extrinsically chiral metamaterial [J]. Applied Physics Letters, 2008, 93 (19): 191911-1-191911-3.
[17] ANDRYIEUSKI A, LAVRINENKO A V. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach[J]. Optics Express, 2013, 21(7): 9144-9155.
[18] GUGLIELMELLI A, NICOLETTA G, VALENTE L, et al. Numerical modeling of 3D chiral metasurfaces for sensing applications[J]. Crystals, 2022, 12(12): 1804-1815.
[19] SHOKATI E, ASGARI S, GRANPAYEH N. Dual-band polarization-sensitive graphene chiral metasurface and its application as a refractive index sensor[J]. IEEE Sensors Journal, 2019, 19(21): 9991-9996.
[20] LI J, ZHENG C, YUE Z, et al. Active controllable spin-selective terahertz asymmetric transmission based on all-silicon metasurfaces[J]. Applied Physics Letters, 2021, 118(22): 221110-1-221110-8.
[21] ZHOU J, WANG Y, TIAN S, et al. Tunable circular dichroism in a graphene extrinsically chiral L-shaped metasurface[J]. Laser Physics Letters, 2020, 17(12): 126201-1-126201-5.