• Journal of Applied Optics
  • Vol. 44, Issue 2, 371 (2023)
Yusheng ZHAI1,2, Ben YANG1,2, Zhifeng ZHANG1,2,*, Rui WANG1,2..., Haiqi XI1,2, Shangshang LI1,2, Lijie GENG1,2, Ruiliang ZHANG1,2 and Cuifang KUANG2,3|Show fewer author(s)
Author Affiliations
  • 1Henan Key Laboratory of Magnetoelectronic Information Functional Materials, School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
  • 2Zhengzhou Key Laboratory of Information Optics and Photoelectric Technology, School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
  • 3State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.5768/JAO202344.0203002 Cite this Article
    Yusheng ZHAI, Ben YANG, Zhifeng ZHANG, Rui WANG, Haiqi XI, Shangshang LI, Lijie GENG, Ruiliang ZHANG, Cuifang KUANG. Line structured light calibration system based on planar complementary target[J]. Journal of Applied Optics, 2023, 44(2): 371 Copy Citation Text show less
    Schematic diagram of planar complementary target system device
    Fig. 1. Schematic diagram of planar complementary target system device
    Mathematical model of projection imaging with monocular camera
    Fig. 2. Mathematical model of projection imaging with monocular camera
    Sub-pixel points sampling of eccentric ellipse edge
    Fig. 3. Sub-pixel points sampling of eccentric ellipse edge
    Eccentric error compensation model of geometrical relationship of concentric circle projection
    Fig. 4. Eccentric error compensation model of geometrical relationship of concentric circle projection
    Fluctuation range of eccentric error of inner and outer circles
    Fig. 5. Fluctuation range of eccentric error of inner and outer circles
    Plane fitting of line structured light
    Fig. 6. Plane fitting of line structured light
    Measurement of large-size workpiece in complex environment
    Fig. 7. Measurement of large-size workpiece in complex environment
    参数数值参数数值
    电压/V24LED 数量/颗62
    基板尺寸/mm450×360激光直写精度/mm0.001
    壳体尺寸/mm480×400×40高照强度/lux100 000±2 000
    棋盘格边长/mm45可调节高度/mm0~1 500
    内圆直径/mm30相邻两圆圆心距/mm90
    XY方向可调节角度/(°)0~360Z方向可调节角度/(°)−45~45
    Table 1. Parameters of planar complementary target system device
    参数传统方法标定值所提方法标定值
    fx346.636 0347.113 3
    fy343.483 7344.163 7
    u0633.887 6634.137 1
    v0515.955 3514.325 8
    RMS0.213 70.032 6
    Table 2. Comparison of calibration results between proposed method and traditional method
    测量序号标准值/mm人工测量值/mm系统测量值/mm
    1799.998799.998799.994 2
    2800.001799.992 7
    3799.898800.005 1
    4799.899799.993 5
    5800.001800.004 6
    6799.998799.995 3
    7799.999800.004 8
    8800.098799.993 9
    最大误差值/mm0.100 00.007 1
    误差均值/mm0.038 20.005 1
    均方差/mm0.064 10.005 7
    Table 3. Comparison of measurement results of grinding wheels
    Yusheng ZHAI, Ben YANG, Zhifeng ZHANG, Rui WANG, Haiqi XI, Shangshang LI, Lijie GENG, Ruiliang ZHANG, Cuifang KUANG. Line structured light calibration system based on planar complementary target[J]. Journal of Applied Optics, 2023, 44(2): 371
    Download Citation