[1] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19-29.
[2] CHOW J, KOPP R J, PORTNEY P R. Energy resources and global development[J]. Science, 2003, 302(5650): 1528-1531.
[5] TIKEKAR M D, CHOUDHURY S, TU Z, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nat Energy, 2016, 1: 16114.
[6] XU J, DOU Y, WEI Z, et al. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries[J]. Adv Sci, 2017, 4(10): 1700146.
[8] SUN S, LIU B, ZHANG H, et al. Boosting energy storage via confining soluble redox species onto solid-liquid interface[J]. Adv Energy Mater, 2021, 11(8): 2003599.
[9] LIN D, LI Y. Recent advances of aqueous rechargeable zinc-iodine batteries: Challenges, solutions, and prospects[J]. Adv Mater, 2022, 34(23): 2108856.
[10] HE Y, LIU M, ZHANG J. Rational modulation of carbon fibers for high-performance zinc-iodine batteries[J]. Adv Sustain Syst, 2020, 4(11): 2000138.
[11] KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nat Energy, 2016, 1: 16119.
[12] ZHAO Q, LU Y, ZHU Z, et al. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode[J]. Nano Lett, 2015, 15(9): 5982-5987.
[13] SONIGARA K K, ZHAO J, MACHHI H K, et al. Self-assembled solid-state gel catholyte combating iodide diffusion and self-discharge for a stable flexible aqueous Zn-I2 battery[J]. Adv Energy Mater, 2020, 10(47): 2001997.
[14] DONG H, LI J, GUO J, et al. Insights on flexible zinc-ion batteries from lab research to commercialization[J]. Adv Mater, 2021, 33(20): 2007548.
[15] WANG Z, HUANG J, GUO Z, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes[J]. Joule, 2019, 3(5): 1289-1300.
[16] MA L, YING Y, CHEN S, et al. Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities[J]. Angew Chem Int Ed, 2021, 60(7): 3791-3798.
[17] YANG H, QIAO Y, CHANG Z, et al. A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries[J]. Adv Mater, 2020, 32(38): 2004240.
[18] TUREKIAN K K, WEDEPOHL K H. Distribution of the elements in some major units of the earth's crust[J]. Geol Soc Am Bull, 1961, 72(2): 175.
[19] LI X, WANG S, WANG T, et al. Bis-ammonium salts with strong chemisorption to halide ions for fast and durable aqueous redox Zn ion batteries[J]. Nano Energy, 2022, 98: 107278.
[20] PAN H, LI B, MEI D, et al. Controlling solid-liquid conversion reactions for a highly reversible Aqueous zinc-iodine battery[J]. ACS Energy Lett, 2017, 2(12): 2674-2680.
[21] LI X, LI N, HUANG Z, et al. Enhanced redox kinetics and duration of aqueous I2/I- conversion chemistry by MXene confinement[J]. Adv Mater, 2021, 33(8): 2006897.
[22] BAI C, CAI F, WANG L, et al. A sustainable aqueous Zn?I2 battery[J]. Nano Res, 2018, 11(7): 3548-3554.
[23] LI Y, LIU L, LI H, et al. Rechargeable aqueous zinc-iodine batteries: Pore confining mechanism and flexible device application[J]. Chem Commun, 2018, 54(50): 6792-6795.
[24] YU D, KUMAR A, NGUYEN T A, et al. High-voltage and ultra-Stable aqueous zinc-iodine battery enabled by N-doped carbon materials: revealing the contributions of nitrogen configurations[J]. ACS Sustain Chem Eng, 2020, 8(36): 13769-13776.
[25] CHAI S, YAO J, WANG Y, et al. Mediating iodine cathodes with robust directional halogen bond interactions for highly stable rechargeable Zn-I2 batteries[J]. Chem Eng J, 2022, 439: 135676.
[26] LIU W, LIU P, LYU Y, et al. Advanced Zn-I2 battery with excellent cycling stability and good rate performance by a multifunctional iodine host[J]. ACS Appl Mater Interfaces, 2022, 14(7): 8955-8962.
[27] JIN X, SONG L, DAI C, et al. A flexible aqueous zinc-iodine microbattery with unprecedented energy density[J]. Adv Mater, 2022, 34(15): 2109450.
[28] MIAO X, CHEN Q, LIU Y, et al. Performance comparison of electro-polymerized polypyrrole and polyaniline as cathodes for iodine redox reaction in zinc-iodine batteries[J]. Electrochim Acta, 2022, 415: 140206.
[29] LIN D, RAO D, CHIOVOLONI S, et al. Prototypical study of double-layered cathodes for aqueous rechargeable Static Zn?I2 batteries[J]. Nano Lett, 2021, 21(9): 4129-4135.
[30] ZHANG L, ZHANG M, GUO H, et al. A universal polyiodide regulation using quaternization engineering toward high value-added and ultra-stable zinc-iodine batteries[J]. Adv Sci, 2022, 9(13): 2105598.
[31] ZHANG S, HAO J, LI H, et al. Polyiodide confinement by starch enables shuttle-free Zn-iodine batteries[J]. Adv Mater, 2022, 34(23): 2201716.
[32] LI Z, WU X, YU X, et al. Long-life aqueous Zn?I2 battery enabled by a low-cost multifunctional zeolite membrane separator[J]. Nano Lett, 2022, 22(6): 2538-2546.
[33] YANG Y, LIANG S, LU B, et al. Eutectic electrolyte based on N-methylacetamide for highly reversible zinc-iodine battery[J]. Energy Environ Sci, 2022, 15(3): 1192-1200.
[34] LU K, ZHANG H, SONG B, et al. Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc?iodine battery[J]. Electrochim Acta, 2019, 296: 755-761.
[35] XU J, WANG J, GE L, et al. ZIF-8 derived porous carbon to mitigate shuttle effect for high performance aqueous zinc-iodine batteries[J]. J Colloid Interface Sci, 2022 610: 98-105.
[37] HE Y, LIU M, CHEN S, et al. Shapeable carbon fiber networks with hierarchical porous structure for high-performance Zn-I2 batteries[J]. Sci China Chem, 2022, 65(2): 391-398.
[39] XU J, MA W, GE L, et al. Confining iodine into a biomass-derived hierarchically porous carbon as cathode material for high performance zinc-iodine battery[J]. J Alloys Compd, 2022, 912: 165151.
[40] YAN L, LIU T, ZENG X, et al. Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery[J]. Carbon, 2022, 187: 145-152.
[41] WU Z, WANG S, WANG R, et al. Carbon nanotubes as effective interlayer for high performance Li-I2 batteries: Long cycle life and superior rate performance[J]. J Electrochem Soc, 2018, 165(5): A1156-A1159.
[43] WANG F, LIU Z, YANG C, et al. Fully Conjugated phthalocyanine copper metal-organic frameworks for sodium-iodine batteries with long-time-cycling durability[J]. Adv Mater, 2020, 32(4): 1905361.
[44] HUBER F, BERWANGER J, POLESYA S, et al. Chemical bond formation showing a transition from physisorption to chemisorption[J]. Science, 2019, 366(6462): 235-238.
[45] CAVALLO G, METRANGOLO P, MILANI R, et al. The halogen bond[J]. Chem Rev, 2016, 116(4): 2478-2601.
[46] SUN C, SHI X, ZHANG Y, et al. Ti3C2Tx MXene interface layer driving ultra-stable lithium-iodine batteries with both high iodine content and mass loading[J]. ACS Nano, 2020, 14(1): 1176-1184.
[47] MENG Z, TAN X, ZHANG S, et al. Ultra-stable binder-free rechargeable Li/I2 batteries enabled by "Betadine'' chemical interaction[J]. Chem Commun, 2018, 54(87):12337-12340.
[48] WU W, LI C, WANG Z, et al. Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries[J]. Chem Eng J, 2022, 428: 131283.
[49] ZENG X, MENG X, JIANG W, et al. Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc-iodine batteries[J]. ACS Sustain Chem Eng, 2020, 8(38): 14280-14285.
[50] ZOU Y, LIU T, DU Q, et al. A four-electron Zn?I2 aqueous battery enabled by reversible I-/I2/I+ conversion[J]. Nat Commun, 2021, 12(1): 170.
[51] LI X, LI M, HUANG Z, et al. Activating the I0/I+ redox couple in an aqueous I2?Zn battery to achieve a high voltage plateau[J]. Energy Environ Sci, 2021,14(1): 407-413.
[52] LI W, WANG K, JIANG K. A high energy effciency and long life aqueous Zn-I2 battery[J]. J Mater Chem A, 2020, 8(7): 3785-3794.
[53] CHEN C, LI Z, XU Y, et al. High-energy density aqueous zinc-iodine batteries with ultra-long cycle life enabled by the ZnI2 additive[J]. ACS Sustain Chem Eng, 2021, 9(39): 13268-13276.
[55] HONG J J, ZHU L, CHEN C, et al. A dual plating battery with the iodine/[ZnIx(OH2)4-x]2-x cathode[J]. Angew Chem Int Ed, 2019, 58(44): 15910-15915.
[56] MACHHI H K, SONIGARA K K, BARIYA S N, et al. Hierarchically porous metal-organic gel hosting catholyte for limiting iodine diffusion and self-discharge control in sustainable aqueous zinc-I2 batteries[J]. ACS Appl Mater Interfaces, 2021, 13(18): 21426-21435.
[57] SHANG W, ZHU J, LIU Y, et al. Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes[J]. ACS Appl Mater Interfaces, 2021, 13(21): 24756-24764.
[58] YUAN Z, DUAN Y, ZHANG H, et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium ?ow batteries[J]. Energy Environ Sci, 2016. 9(2): 441-447.
[59] TANGTHUAM P, PIMOEI J, MOHAMAD A A, et al. Carboxymethyl cellulose-based polyelectrolyte as cationic exchange membrane for zinc?iodine batteries[J]. Heliyon, 2020, 6(10): e05391.