• Optoelectronics Letters
  • Vol. 18, Issue 3, 148 (2022)
Al-Sabana Omar and Abdellatif Sameh O.*
Author Affiliations
  • Electrical Engineering Department, Faculty of Engineering and FabLab in the Centre for Emerging Learning Technology (CELT), The British University in Egypt, Cairo 11387, Egypt
  • show less
    DOI: 10.1007/s11801-022-1115-9 Cite this Article
    Omar Al-Sabana, Sameh O. Abdellatif. Optoelectronic devices informatics: optimizing DSSC performance using random-forest machine learning algorithm[J]. Optoelectronics Letters, 2022, 18(3): 148 Copy Citation Text show less
    References

    [1] SáNCHEZ M, FRANCISCO J, STEINER M, et al. Worldwide energy harvesting potential of hybrid CPV/PV technology[J]. Joule, 2021, 24(7):971-987.

    [2] AHMAD K S, NAQVI K S, JAFFRI S B. Systematic review elucidating the generations and classifications of solar cells contributing towards environmental sustainability integration[J]. Reviews in inorganic chemistry, 2021, 41(1):21-39.

    [3] ABDELLATIF S O, JOSTEN S, KHALIL A S G, et al. Transparency and diffused light efficiency of dye-sensitized solar cells:tuning and a new figure of merit[J]. IEEE journal of photovoltaics, 2020, 10(2): 522-530.

    [4] MOUSTAFA M M, ISMAIL Z S, HASHEM E M, et al. Investigating the tradeoff between transparency and efficiency in semitransparent bifacial mesosuperstructured solar cells for millimeter-scale applications[J]. IEEE journal of photovoltaics, 2021, 11(5):222-235.

    [5] ABDELLATIF S, SHARIFI S, KIRAH K, et al. Refractive index and scattering of porous TiO2 films[J]. Microporous and mesoporous materials, 2018, 264:84-91.

    [6] ABDELLATIF S, JOSTEN S, SHARIFI P, et al. Optical investigation of porous TiO2 in mesostructured solar cells[C]//Proceedings of Physics and Simulation of Optoelectronic Devices XXVI, International Society for Optics and Photonics, January 27-February 1, 2018, San Francisco, CA, USA. Washington: SPIE, 2018: 105260A.

    [7] HATEM T, ISMAIL Z, ELMAHGARY Z, et al. Optimization of organic meso-superstructured solar cells for underwater IoT2 self-powered sensors[J]. IEEE transactions on electron devices, 2021, 68(10):5319-5321.

    [8] MARRI A R, MARCHINI E, CABANES V D, et al. Record power conversion efficiencies for iron (II)-NHC-sensitized DSSCs from rational molecular engineering and electrolyte optimization[J]. Journal of materials chemistry A, 2021, 9(6):3540-3554.

    [9] SHAH S A A, GUO Z, SAYYAD M H, et al. Optimizing zinc oxide nanorods based DSSC employing different growth conditions and SnO coating[J]. Journal of materials science:materials in electronics, 2021, 32(2): 2366-2372.

    [10] WARD L, WOLVERTON C. Atomistic calculations and materials informatics:a review[J]. Current opinion in solid state and materials science, 2017, 21(3):167-176.

    [11] MAHMOOD A, WANG J L. Machine learning for high performance organic solar cells:current scenario and future prospects[J]. Energy & environmental science, 2021, 14(1):90-105.

    [12] CHOUDHARY K, BERCX M, JIANG J, et al. Accelerated discovery of efficient solar cell materials using quantum and machine-learning methods[J]. Chemistry of materials, 2019, 31(15):5900-5908.

    [13] SAHU H, MA H. Unraveling correlations between molecular properties and device parameters of organic solar cells using machine learning[J]. The journal of physical chemistry letters, 2019, 10(22):7277-7284.

    [14] AROOJ Q, WANG F. Switching on optical properties of D-π-A DSSC sensitizers from π-spacers towards machine learning[J]. Solar energy, 2019, 188:1189-1200.

    [15] WEN Y, FU L, LI G, et al. Accelerated discovery of potential organic dyes for dye-sensitized solar cells by interpretable machine learning models and virtual screening[J]. Solar RRL, 2020, 4(6):2000110.

    [16] AL-SABAN O, ABDELLATIF S O. Optoelectronic materials informatics:utilizing random-forest machine learning in optimizing the harvesting capabilities of mesostructured-based solar cells[C]//Proceedings of 2021 IEEE International Telecommunications Conference (ITC-Egypt), July 13-15, 2021, Alexandria, Egypt. New York:IEEE, 2021:1-4.

    [17] RODRIGUEZ-GALIANO V, SANCHEZ-CASTILLO M, CHICA-OLMO M, et al. Machine learning predictive models for mineral prospectivity:an evaluation of neural networks, random forest, regression trees and support vector machines[J]. Ore geology reviews, 2015, 71:804-818.

    [18] EID A A, ISMAIL Z S, ABDELLATIF S O. Optimizing SCAPS model for perovskite solar cell equivalent circuit with utilizing Matlab-based parasitic resistance estimator algorithm[C]//Proceedings of 2020 IEEE 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), October 24-26, 2020, Giza, Egypt. New York:IEEE, 2020:503-507.

    [19] HASSAN M M, SAHBEL A, ABDELLATIF S O, et al. Toward low-cost, stable, and uniform high-power LED array for solar cells characterization[C]//Proceedings of New Concepts in Solar and Thermal Radiation Conversion III, International Society for Optics and Photonics, August 24-September 4, 2020, California, USA. Washington :SPIE, 2020:114960Q.

    [20] KIM J Y, LEE K, COATES N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science, 2007, 317(5835):222-225.

    Omar Al-Sabana, Sameh O. Abdellatif. Optoelectronic devices informatics: optimizing DSSC performance using random-forest machine learning algorithm[J]. Optoelectronics Letters, 2022, 18(3): 148
    Download Citation