• Acta Photonica Sinica
  • Vol. 47, Issue 7, 716001 (2018)
LI Jin1、*, LIU Ting-yu1、2, FU Ming-xue1, and LU Xiao-xiao1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20184707.0716001 Cite this Article
    LI Jin, LIU Ting-yu, FU Ming-xue, LU Xiao-xiao. Optical Properties Simulating Calculation of the F or F+ Center in LuPO4 Crystal[J]. Acta Photonica Sinica, 2018, 47(7): 716001 Copy Citation Text show less
    References

    [1] LAI H, BAO A, YANG Y,et al. UV luminescence property of YPO4∶RE (RE=Ce3+,Tb3+)[J]. The Journal of Physical Chemistry C, 2008, 112(1): 282-286.

    [2] KAWAGUCHI N, YANAGIDA T, FUJIMOTO Y,et al. VUV Luminescence with Nd doped KCaF3 under X-Ray excitation[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2183-2187.

    [3] WISNIEWSKI D, TAVERNIER S, WOJTOWICZ A J, et al. LuPO4: Nd and YPO4: Nd—new promising VUV scintillation materials[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486(1): 239-243.

    [4] WISNIEWSKI D, TAVERNIER S, DORENBOS P, et al. VUV scintillation of LuPO/sub4: Nd and YPO/sub4: Nd[J]. IEEE Transactions on Nuclear Science, 2002, 49(3): 937-940.

    [5] ZORENKO Y, GORBENKO V, KONSTANKEVYCH I,et al. Peculiarities of luminescence and scintillation properties of YAP: Ce and LuAP: Ce single crystals and single crystalline films[J]. Radiation Measurements, 2007, 42(4): 528-532.

    [6] NING L, CHENG W, ZHOU C,et al. Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid DFT study[J]. The Journal of Physical Chemistry C, 2014, 118(34): 19940-19947.

    [7] VEDDA A, MARTINI M, MEINARDI F,et al. Tunneling process in thermally stimulated luminescence of mixed LuxY1-xAlO3: Ce crystals[J]. Physical Review B, 2000, 61(12): 8081.

    [8] NIKL M, LAGUTA VV, VEDDA A. Energy transfer and charge carrier capture processes in wide-band-gap scintillators[J]. Physica Status Solidi (a), 2007, 204(3): 683-689.

    [9] ZORENKO Y V, VOLOSHINOVSKII A S, STRYGANYUK G M, et al. Ultraviolet luminescence of single crystals and single-crystal films of YAlO3[J]. Optics and Spectroscopy, 2004, 96(1): 70-76.

    [10] BLAZEK K, KRASNIKOV A, NEJEZCHLEB K,et al. Luminescence and defects creation in Ce3+-doped YAlO3 and Lu0.3Y0.7AlO3crystals[J]. Physica Status Solidi (b), 2005, 242(6): 1315-1323.

    [11] KRASNIKOV A, SAVIKHINA T, ZAZUBOVICH S,et al. Luminescence and defects creation in Ce3+-doped aluminium and lutetium perovskites and garnets[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1): 130-133.

    [12] ZORENKO Y V, VOLOSHINOVSKII A S, KONSTANKEVYCH I V. Luminescence of F+ and F centers in YAlO3[J]. Optics and Spectroscopy, 2004, 96(4): 532-537.

    [13] LANY S, ZUNGER A.Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs[J]. Physical Review B, 2008, 78(23): 235104.

    [14] COLLEONI D, PASQUARELLO A.The OAs defect in GaAs: a hybrid density functional study[J]. Applied Surface Science, 2014, 291: 6-10.

    [15] FREYSOLDT C, NEUGEBAUER J, VAN DE WALLE C G. Fully ab initio finite-size corrections for charged-defect supercell calculations[J]. Physical Review Letters, 2009, 102(1): 016402.

    [16] KRUMPEL A H, BOS A J J, BESSIèRE A, et al. Controlled electron and hole trapping in YPO4∶Ce3+, Ln3+ and LuPO4∶Ce3+, Ln3+(Ln= Sm, Dy, Ho, Er, Tm)[J]. Physical Review B, 2009, 80(8): 085103.

    [17] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865.

    [18] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169.

    [19] KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.

    [20] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened coulomb potential[J]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215.

    [21] MIKHAILIN VV, SPASSKY D A, KOLOBANOV V N, et al. Luminescence study of the LuBO3 and LuPO4 doped with RE3+[J]. Radiation Measurements, 2010, 45(3): 307-310.

    [22] ALKAUSKAS A, BROQVIST P, PASQUARELLO A. Defect energy levels in density functional calculations: Alignment and band gap problem[J]. Physical Review Letters, 2008, 101(4): 046405.

    [23] VAN DE WALLE C G, NEUGEBAUER J.First-principles calculations for defects and impurities: Applications to III-nitrides[J]. Journal of Applied Physics, 2004, 95(8): 3851-3879.

    [24] ZHANG S B, NORTHRUP J E. Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion[J]. Physical Review Letters, 1991, 67(17): 2339.

    [25] KUMAGAI Y, OBA F. Electrostatics-based finite-size corrections for first-principles point defect calculations[J]. Physical Review B, 2014, 89(19): 195205.

    [26] FREYSOLDT C, NEUGEBAUER J, VAN DE WALLE C G. Electrostatic interactions between charged defects in supercells[J]. Physica Status Solidi (b), 2011, 248(5): 1067-1076.

    [27] CHEN W, PASQUARELLO A.Correspondence of defect energy levels in hybrid density functional theory and many-body perturbation theory[J]. Physical Review B, 2013, 88(11): 115104.

    [28] JANOTTI A, VAN DE WALLE C G.Oxygen vacancies in ZnO[J]. Applied Physics Letters, 2005, 87(12): 122102.

    [29] ALKAUSKAS A, LYONS J L, STEIAUF D, et al. First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: the example of GaN and ZnO[J]. Physical Review Letters, 2012, 109(26): 267401.

    [30] ALKAUSKAS A, MCCLUSKEY M D, VAN DE WALLE C G.Tutorial: defects in semiconductors—combining experiment and theory[J]. Journal of Applied Physics, 2016, 119(18): 181101.

    [31] HUANG K, RHYS A. Theory of light absorption and non-radiative transitions in F-centres[C].Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1950, 204(1078): 406-423.

    [32] PETROSYAN A, OVANESYAN K, SHIRINYAN G, et al. The melt growth of large LuAP single crystals for PET scanners[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1): 168-172.

    [33] MAKHOV V N, KIRIKOVA N Y, KIRM M,et al. Luminescence properties of YPO4: Nd3+: a promising VUV scintillator material[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486(1): 437-442.

    [34] CHEN J, ZHAO G, LIU T.Optical polarized properties of the F2 center in YAlO3 crystal[J]. Journal of Electron Spectroscopy and Related Phenomena, 2010, 182(1): 47-50.

    LI Jin, LIU Ting-yu, FU Ming-xue, LU Xiao-xiao. Optical Properties Simulating Calculation of the F or F+ Center in LuPO4 Crystal[J]. Acta Photonica Sinica, 2018, 47(7): 716001
    Download Citation