[1] T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018).
[2] P. Leung, X.H. Li, C.P. de Leon, L. Berlouis, C.T.J. Low et al., Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2(27), 10125–10156 (2012).
[3] C. Chen, C.S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15(1), 121 (2023).
[4] J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022).
[5] X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15(1), 32 (2023).
[6] A. Castillo, D.F. Gayme, Grid-scale energy storage applications in renewable energy integration: a survey. Energy Convers. Manag. 87, 885–894 (2014).
[7] S. Ahmed, A. Mahmood, A. Hasan, G.A.S. Sidhu, M.F.U. Butt, A comparative review of china, india and pakistan renewable energy sectors and sharing opportunities. Renew. Sustain. Energy Rev. 57, 216–225 (2016).
[8] C. Wu, X. Tong, Y. Ai, D.S. Liu, P. Yu et al., A review: enhanced anodes of Li/Na-ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10(3), 40 (2018).
[9] W. Wang, Q.T. Luo, B. Li, X.L. Wei, L.Y. Li et al., Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23(8), 970–986 (2013).
[10] R.J. Ye, D. Henkensmeier, S.J. Yoon, Z.F. Huang, D.K. Kim et al., Redox flow batteries for energy storage: a technology review. J. Electrochem. Energy Convers. Storage 15(1), 21 (2018).
[11] L. Gao, Z. Li, Y. Zou, S. Yin, P. Peng et al., A high-performance aqueous zinc-bromine static battery. iScience 23(8), 101348 (2020).
[12] S. Biswas, A. Senju, R. Mohr, T. Hodson, N. Karthikeyan et al., Minimal architecture zinc-bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 10(1), 114–120 (2017).
[13] S. Barnartt, D.A. Forejt, Bromine-zinc secondary cells. J. Electrochem. Soc. 111(11), 1201 (1964).
[14] P.C. Butler, P.A. Eidler, P.G. Grimes, S.E. Klassen, R.C. Miles, in Handbook of Batteries. ed. by D. By Linden, T. Reddy (McGraw-Hill Professional, New York, 2001), pp.1263–1284
[15] C. Dai, L. Hu, X. Jin, Y. Wang, R. Wang et al., Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Sci. Adv. 8(28), eabo6688 (2022).
[16] B. Plackett, A conversation with thomas maschmeyer. ACS Cent. Sci. 7(12), 1957–1958 (2021).
[17] J.H. Lee, Y. Byun, G.H. Jeong, C. Choi, J. Kwen et al., High-energy efficiency membraneless flowless Zn–Br battery: utilizing the electrochemical-chemical growth of polybromides. Adv. Mater. 31(52), e1904524 (2019).
[18] X.W. Chen, B.J. Hopkins, A. Helal, F.Y. Fan, K.C. Smith et al., A low-dissipation, pumpless, gravity-induced flow battery. Energy Environ. Sci. 9(5), 1760–1770 (2016).
[19] W.A. Braff, M.Z. Bazant, C.R. Buie, Membrane-less hydrogen bromine flow battery. Nat. Commun. 4(1), 2346 (2013).
[20] Y.X. Yao, J.F. Lei, Y. Shi, F. Ai, Y.C. Lu, Assessment methods and performance metrics for redox flow batteries. Nat. Energy 6(6), 582–588 (2021).
[21] K. Likit-anurak, K. Uthaichana, K. Punyawudho, Y. Khunatorn, The performance and efficiency of organic electrolyte redox flow battery prototype, in 2017 2nd International Conference on Advances on Clean Energy Research (Icacer 2017), vol. 118 (2017), pp. 54–62.
[22] M. Mourshed, S.M.R. Niya, R. Ojha, G. Rosengarten, J. Andrews et al., Carbon-based slurry electrodes for energy storage and power supply systems. Energy Storage Mater. 40, 461–489 (2021).
[23] K. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, S. Tasnim, Vanadium redox flow batteries: a comprehensive review. J. Energy Storage 25, 100844 (2019).
[24] A. Cunha, J. Martins, N. Rodrigues, F.P. Brito, Vanadium redox flow batteries: a technology review. Int. J. Energy Res. 39(7), 889–918 (2015).
[25] J. Houser, A. Pezeshki, J.T. Clement, D. Aaron, M.M. Mench, Architecture for improved mass transport and system performance in redox flow batteries. J. Power Sources 351, 96–105 (2017).
[26] S. Suresh, T. Kesavan, Y. Munaiah, I. Arulraj, S. Dheenadayalan et al., Zinc-bromine hybrid flow battery: effect of zinc utilization and performance characteristics. RSC Adv. 4(71), 37947–37953 (2014).
[27] C.P. De Leon, A. Frías-Ferrer, J. González-García, D. Szánto, F.C. Walsh, Redox flow cells for energy conversion. J. Power Sources 160(1), 716–732 (2006).
[28] M. Skyllas-Kazacos, M.H. Chakrabarti, S.A. Hajimolana, F.S. Mjalli, M. Saleem, Progress in flow battery research and development. J. Electrochem. Soc. 158(8), R55–R79 (2011).
[29] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications. Electrochim. Acta 101, 27–40 (2013).
[30] L.H. Thaller, Electrically rechargeable redox flow cells, in 9th Intersociety Energy Conversion Engineering Conference (1974), pp. 924–928
[31] Z.Y. Wang, L.Y.S. Tam, Y.C. Lu, Flexible solid flow electrodes for high-energy scalable energy storage. Joule 3(7), 1677–1688 (2019).
[32] M. Park, J. Ryu, W. Wang, J. Cho, Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2(1), 1–18 (2016).
[33] Y.K. Zeng, X.L. Zhou, L. An, L. Wei, T.S. Zhao, A high-performance flow-field structured iron-chromium redox flow battery. J. Power Sources 324, 738–744 (2016).
[34] K. Gong, X.Y. Ma, K.M. Conforti, K.J. Kuttler, J.B. Grunewald et al., A zinc-iron redox-flow battery under $100 per kWh of system capital cost. Energy Environ. Sci. 8(10), 2941–2945 (2015).
[35] Z.J. Li, G.M. Weng, Q.L. Zou, G.T. Cong, Y.C. Lu, A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy 30, 283–292 (2016).
[36] C. Wang, Q. Lai, P. Xu, D. Zheng, X. Li et al., Cage-like porous carbon with superhigh activity and Br(2)-complex-entrapping capability for bromine-based flow batteries. Adv. Mater. 29(22), 1605815 (2017).
[37] L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng, Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries. Appl. Energy 180, 386–391 (2016).
[38] C. Minke, T. Turek, Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries—a review. J. Power Sources 376, 66–81 (2018).
[39] D.G. Kwabi, Y. Ji, M.J. Aziz, Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem. Rev. 120(14), 6467–6489 (2020).
[40] X. Ke, J.M. Prahl, J.I.D. Alexander, J.S. Wainright, T.A. Zawodzinski et al., Rechargeable redox flow batteries: flow fields, stacks and design considerations. Chem. Soc. Rev. 47(23), 8721–8743 (2018).
[41] K.J. Kim, M.S. Park, Y.J. Kim, J.H. Kim, S.X. Dou et al., A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 3(33), 16913–16933 (2015).
[42] L. Joerissen, J. Garche, C. Fabjan, G. Tomazic, Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems. J. Power Sources 127(1–2), 98–104 (2004).
[43] J.A. Luo, B. Hu, M.W. Hu, Y. Zhao, T.L. Liu, Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett. 4(9), 2220–2240 (2019).
[44] J. Winsberg, T. Hagemann, T. Janoschka, M.D. Hager, U.S. Schubert, Redox-flow batteries: from metals to organic redox-active materials. Angew. Chem. Int. Ed. 56(3), 686–711 (2017).
[45] V. Singh, S. Kim, J. Kang, H.R. Byon, Aqueous organic redox flow batteries. Nano Res. 12(9), 1988–2001 (2019).
[46] T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern et al., An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527(7576), 78–81 (2015).
[47] B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt et al., A metal-free organic–inorganic aqueous flow battery. Nature 505(7482), 195–198 (2014).
[48] H.N. Chen, G.T. Cong, Y.C. Lu, Recent progress in organic redox flow batteries: active materials, electrolytes and membranes. J. Energy Chem. 27(5), 1304–1325 (2018).
[49] Y.K. Zeng, T.S. Zhao, L. An, X.L. Zhou, L. Wei, A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J. Power Sources 300, 438–443 (2015).
[50] Y.K. Zeng, T.S. Zhao, X.L. Zhou, L. Zeng, L. Wei, The effects of design parameters on the charge–discharge performance of iron-chromium redox flow batteries. Appl. Energy 182, 204–209 (2016).
[51] C.Y. Sun, H. Zhang, Investigation of nafion series membranes on the performance of iron-chromium redox flow battery. Int. J. Energy Res. 43(14), 8739–8752 (2019).
[52] S.L. Chang, J.Y. Ye, W. Zhou, C. Wu, M. Ding et al., A low-cost speek-k type membrane for neutral aqueous zinc-iron redox flow battery. Surf. Coat. Technol. 358, 190–194 (2019).
[53] Z. Yuan, Y. Duan, T. Liu, H. Zhang, X. Li, Toward a low-cost alkaline zinc-iron flow battery with a polybenzimidazole custom membrane for stationary energy storage. iScience 3, 40–49 (2018).
[54] K. Amini, M.D. Pritzker, In situ polarization study of zinc-cerium redox flow batteries. J. Power Sources 471, 228463 (2020).
[55] D.P. Trudgeon, K.P. Qiu, X.H. Li, T. Mallick, O.O. Taiwo et al., Screening of effective electrolyte additives for zinc-based redox flow battery systems. J. Power Sources 412(44–54 (2019).
[56] L.F. Arenas, A. Loh, D.P. Trudgeon, X.H. Li, C.P. de Leon et al., The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage. Renew. Sustain. Energy Rev. 90, 992–1016 (2018).
[57] G.L. Soloveichik, Flow batteries: current status and trends. Chem. Rev. 115(20), 11533–11558 (2015).
[58] G.M. Weng, Z.J. Li, G.T. Cong, Y.C. Zhou, Y.C. Lu, Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy Environ. Sci. 10(3), 735–741 (2017).
[59] E. Sánchez-Díez, E. Ventosa, M. Guarnieri, A. Trovò, C. Flox et al., Redox flow batteries: status and perspective towards sustainable stationary energy storage. J. Power Sources 481, 228804 (2021).
[60] L.Y. Li, S. Kim, W. Wang, M. Vijayakumar, Z.M. Nie et al., A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv. Energy Mater. 1(3), 394–400 (2011).
[61] Z. Yuan, Y. Yin, C. Xie, H. Zhang, Y. Yao et al., Advanced materials for zinc-based flow battery: development and challenge. Adv. Mater. 31(50), e1902025 (2019).
[62] N.A. Sepulveda, J.D. Jenkins, A. Edington, D.S. Mallapragada, R.K. Lester, The design space for long-duration energy storage in decarbonized power systems. Nat. Energy 6(5), 506 (2021).
[63] H.-T. Kim, J.-H. Lee, D.S. Kim, J.H. Yang, in Batteries: Present and Future Energy Storage Challenges. ed. by S. Passerini, D. Bresser, A. Moretti, A. Varzi (Wiley, Berlin, 2020), pp.311–340
[64] G.P. Rajarathnam, T.K. Ellis, A.P. Adams, B. Soltani, R.W. Zhou et al., Chemical speciation of zinc-halide complexes in zinc/bromine flow battery electrolytes. J. Electrochem. Soc. 168(7), 10 (2021).
[65] K. Periyapperuma, Y.F. Zhang, D.R. MacFarlane, M. Forsyth, C. Pozo-Gonzalo et al., Towards higher energy density redox-flow batteries: imidazolium ionic liquid for Zn electrochemistry in flow environment. ChemElectroChem 4(5), 1051–1058 (2017).
[66] P. Xu, T. Li, Q. Zheng, H. Zhang, Y. Yin et al., A low-cost bromine-fixed additive enables a high capacity retention zinc–bromine batteries. J. Energy Chem. 65, 89–93 (2022).
[67] Z.C. Xu, Q. Fan, Y. Li, J. Wang, P.D. Lund, Review of zinc dendrite formation in zinc bromine redox flow battery. Renew. Sustain. Energy Rev. 127, 109838 (2020).
[68] G.P. Rajarathnam, A.M. Vassallo, The Zinc/Bromine Flow Battery: Materials Challenges and Practical Solutions for Technology Advancement (Springer, Singapore, 2016), pp.1–28
[69] Accelerating a Carbon-Free Future (Redflow Limited, 2023). https://redflow.com/. Accessed 2 March 2023
[70] The Future of Storage is Long (Primuspower, 2023). https://primuspower.com/en/. Accessed 3 March 2023
[71] P. Lex, J. Matthews, Recent developments in zinc/bromine battery technology at johnson controls, in IEEE 35th International Power Sources Symposium (1992), pp. 88–92
[72] Q.Z. Lai, H.M. Zhang, X.F. Li, L.Q. Zhang, Y.H. Cheng, A novel single flow zinc–bromine battery with improved energy density. J. Power Sources 235, 1–4 (2013).
[73] W.I. Jang, J.W. Lee, Y.M. Baek, O.O. Park, Development of a pp/carbon/cnt composite electrode for the zinc/bromine redox flow battery. Macromol. Res. 24(3), 276–281 (2016).
[74] S.S. Abd El Rehim, S.M. Abd El Wahaab, E.E. Fouad, H.H. Hassan, Effect of some variables on the electroplating of zinc from acidic acetate baths. J. Appl. Electrochem. 24(4), 350–354 (1994).
[75] H. Ohtaki, T. Radnai, Structure and dynamics of hydrated ions. Chem. Rev. 93(3), 1157–1204 (1993).
[76] L. Guo, H. Guo, H. Huang, S. Tao, Y. Cheng, Inhibition of zinc dendrites in zinc-based flow batteries. Front. Chem. 8, 557 (2020).
[77] K.L. Wang, P.C. Pei, Z. Ma, H.C. Chen, H.C. Xu et al., Dendrite growth in the recharging process of zinc–air batteries. J. Mater. Chem. A 3(45), 22648–22655 (2015).
[78] H.R. Jiang, M.C. Wu, Y.X. Ren, W. Shyy, T.S. Zhao, Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries. Appl. Energy 213, 366–374 (2018).
[79] Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31(36), e1903675 (2019).
[80] K.E. Sun, T.K. Hoang, T.N. Doan, Y. Yu, X. Zhu et al., Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 9(11), 9681–9687 (2017).
[81] W. Lu, C. Xie, H. Zhang, X. Li, Inhibition of zinc dendrite growth in zinc-based batteries. Chemsuschem 11(23), 3996–4006 (2018).
[82] J.L. Ortiz-Aparicio, Y. Meas, G. Trejo, R. Ortega, T.W. Chapman et al., Effects of organic additives on zinc electrodeposition from alkaline electrolytes. J. Appl. Electrochem. 43(3), 289–300 (2013).
[83] J.N. Hao, X.L. Li, S.L. Zhang, F.H. Yang, X.H. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020).
[84] L. Chladil, O. Cech, J. Smejkal, P. Vanysek, Study of zinc deposited in the presence of organic additives for zinc-based secondary batteries. J. Energy Storage 21, 295–300 (2019).
[85] A.K. Worku, Engineering techniques to dendrite free zinc-based rechargeable batteries. Front. Chem. 10, 1018461 (2022).
[86] R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15(1), 81 (2023).
[87] Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14(1), 218 (2022).
[88] H. Meng, Q. Ran, T.Y. Dai, H. Shi, S.P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14(1), 128 (2022).
[89] S.Y. Xie, Y. Li, X. Li, Y.J. Zhou, Z.Q. Dang et al., Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14(1), 39 (2022).
[90] Y.Y. Wang, Y.J. Chen, W. Liu, X.Y. Ni, P. Qing et al., Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 9(13), 8452–8461 (2021).
[91] B. Li, X.T. Zhang, T.L. Wang, Z.X. He, B.A. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2022).
[92] K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13(1), 79 (2021).
[93] Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020).
[94] X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022).
[95] K.N. Zhao, C.X. Wang, Y.H. Yu, M.Y. Yan, Q.L. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Inter. 5(16), 1800848 (2018).
[96] F. Ganne, C. Cachet, G. Maurin, R. Wiart, E. Chauveau et al., Impedance spectroscopy and modelling of zinc deposition in chloride electrolyte containing a commercial additive. J. Appl. Electrochem. 30(6), 665–673 (2000).
[97] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4417 (2004).
[98] H.R. Jiang, W. Shyy, M.C. Wu, L. Wei, T.S. Zhao, Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries. J. Power Sources 365, 34–42 (2017).
[99] Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Correction to: interface engineering of CoS/COO@n-doped graphene nanocomposite for high-performance rechargeable Zn–air batteries. Nano-Micro Lett. 13(1), 97 (2021).
[100] J. Jiang, G. Nie, P. Nie, Z. Li, Z. Pan et al., Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges. Nano-Micro Lett. 12(1), 183 (2020).
[101] X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li et al., Quasi-solid electrolyte interphase boosting charge and mass transfer for dendrite-free zinc battery. Nano-Micro Lett. 15(1), 56 (2023).
[102] N. Wang, H. Wan, J. Duan, X. Wang, L. Tao et al., A review of zinc-based battery from alkaline to acid. Mater. Today Adv. 11, 100149 (2021).
[103] R. Putt, Assessment of Technical and Economic Feasibility of Zinc/Bromine Batteries for Utility Load Leveling. Final Report Gould (Gould, Inc., Rolling Meadows, 1979).
[104] M. Wang, Y. Meng, K. Li, T. Ahmad, N. Chen et al., Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience 2(5), 509–517 (2022).
[105] H. Jia, M.H. Qiu, C.X. Tang, H.Q. Liu, S.H. Fu et al., Nano-scale BN interface for ultra-stable and wide temperature range tolerable Zn anode. EcoMat 4(3), e12190 (2022).
[106] W. Shang, Q. Li, F. Jiang, B. Huang, J. Song et al., Boosting Zn||I(2) battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14(1), 82 (2022).
[107] Z.X. Wu, X.H. Yuan, M.J.H. Jiang, L.L. Wang, Q.H. Huang et al., Zinc–carbon paper composites as anodes for Zn-ion batteries: key impacts on their electrochemical behaviors. Energy Fuels 34(10), 13118–13125 (2020).
[108] M. Li, Q. He, Z.L. Li, Q. Li, Y.X. Zhang et al., A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3 V voltage window and 11000-cycle lifespan. Adv. Energy Mater. 9(29), 1901469 (2019).
[109] L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020).
[110] C. Zhang, W. Shin, L.D. Zhu, C. Chen, J.C. Neuefeind et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy 3(2), 339–348 (2021).
[111] J. Llopis, M. Vàzquez, Study of the impedance of a platinum electrode in the system Br2/Br− (HClO4, aq.). I. Influence of the surface state. Electrochim. Acta 6(1–4), 167–176 (1962).
[112] F. Magno, G.-A. Mazzocchin, G. Bontempelli, Electrochemical behaviour of the bromide ion at a platinum electrode in acetonitrile solvent. J. Electroanal. Chem. Interfacial Electrochem. 47(3), 461–468 (1973).
[113] K.J. Cathro, K. Cedzynska, D.C. Constable, P.M. Hoobin, Selection of quaternary ammonium bromides for use in zinc bromine cells. J. Power Sources 18(4), 349–370 (1986).
[114] R.E. White, S.E. Lorimer, A model of the bromine bromide electrode-reaction at a rotating-disk electrode. J. Electrochem. Soc. 130(5), 1096–1103 (1983).
[115] Y. Popat, D. Trudgeon, C.P. Zhang, F.C. Walsh, P. Connor et al., Carbon materials as positive electrodes in bromine-based flow batteries. ChemPlusChem 87(1), 16 (2022).
[116] L.J.J. Janssen, J.G. Hoogland, Mechanism of bromine evolution at a graphite electrode. Electrochim. Acta 15(10), 1677 (1970).
[117] M. Mastragostino, C. Gramellini, Kinetic study of the electrochemical processes of the bromine/bromine aqueous system on vitreous carbon electrodes. Electrochim. Acta 30(3), 373–380 (1985).
[118] W.L. Wu, S.C. Xu, Z.R. Lin, L. Lin, R.H. He et al., A polybromide confiner with selective bromide conduction for high performance aqueous zinc–bromine batteries. Energy Storage Mater. 49, 11–18 (2022).
[119] F. Yu, L. Pang, X.X. Wang, E.R. Waclawik, F.X. Wang et al., Aqueous alkaline–acid hybrid electrolyte for zinc–bromine battery with 3 V voltage window. Energy Storage Mater. 19, 56–61 (2019).
[120] E. Lancry, B.-Z. Magnes, I. Ben-David, M. Freiberg, New bromine complexing agents for bromide based batteries. ECS Trans. 53(7), 107–115 (2013).
[121] H.J. Lee, D.W. Kim, J.H. Yang, Estimation of state-of-charge for zinc–bromine flow batteries by in situ raman spectroscopy. J. Electrochem. Soc. 164(4), A754–A759 (2017).
[122] M. Kim, D. Yun, J. Jeon, Effect of a bromine complex agent on electrochemical performances of zinc electrodeposition and electrodissolution in zinc–bromide flow battery. J. Power Sources 438, 7 (2019).
[123] K.S. Archana, R.P. Naresh, H. Enale, V. Rajendran, A.M.V. Mohan et al., Effect of positive electrode modification on the performance of zinc–bromine redox flow batteries. J. Energy Storage 29, 101462 (2020).
[124] J.D. Jeon, H.S. Yang, J. Shim, H.S. Kim, J.H. Yang, Dual function of quaternary ammonium in Zn/Br redox flow battery: capturing the bromine and lowering the charge transfer resistance. Electrochim. Acta 127, 397–402 (2014).
[125] M.C. Wu, T.S. Zhao, H.R. Jiang, Y.K. Zeng, Y.X. Ren, High-performance zinc bromine flow battery via improved design of electrolyte and electrode. J. Power Sources 355, 62–68 (2017).
[126] M.C. Wu, T.S. Zhao, R.H. Zhang, L. Wei, H.R. Jiang, Carbonized tubular polypyrrole with a high activity for the Br2/B− redox reaction in zinc–bromine flow batteries. Electrochim. Acta 284, 569–576 (2018).
[127] I. Vogel, A. Möbius, On some problems of the zinc–bromine system as an electric energy storage system of higher efficiency—I. Kinetics of the bromine electrode. Electrochim. Acta 36(9), 1403–1408 (1991).
[128] C.H. Wang, X.F. Li, X.L. Xi, P.C. Xu, Q.Z. Lai et al., Relationship between activity and structure of carbon materials for Br2/Br− in zinc bromine flow batteries. RSC Adv. 6(46), 40169–40174 (2016).
[129] M.C. Wu, T.S. Zhao, L. Wei, H.R. Jiang, R.H. Zhang, Improved electrolyte for zinc–bromine flow batteries. J. Power Sources 384, 232–239 (2018).
[130] L. Hua, W. Lu, T. Li, P. Xu, H. Zhang et al., A highly selective porous composite membrane with bromine capturing ability for a bromine-based flow battery. Mater. Today Energy 21, 100763 (2021).
[131] Q. Xu, T.S. Zhao, Fundamental models for flow batteries. Prog. Energy Combust. Sci. 49, 40–58 (2015).
[132] M.Q. Li, H. Su, Q.G. Qiu, G. Zhao, Y. Sun et al., A quaternized polysulfone membrane for zinc–bromine redox flow battery. J. Chem. 2014, 6 (2014).
[133] C. Chakkaravarthy, A.K.A. Waheed, H.V.K. Udupa, Zinc–air alkaline batteries—a review. J. Power Sources 6(3), 203–228 (1981).
[134] M.T. Tsehaye, F. Alloin, C. Iojoiu, R.A. Tufa, D. Aili et al., Membranes for zinc–air batteries: recent progress, challenges and perspectives. J. Power Sources 475, 23 (2020).
[135] R. Kim, H.G. Kim, G. Doo, C. Choi, S. Kim et al., Ultrathin nafion-filled porous membrane for zinc/bromine redox flow batteries. Sci. Rep. 7(1), 10503 (2017).
[136] C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16(1), 45–56 (2017).
[137] M. Li, L. Ran, R. Knibbe, Zn electrodeposition by an in situ electrochemical liquid phase transmission electron microscope. J. Phys. Chem. Lett. 12(2), 913–918 (2021).
[138] J.H. Park, D. Steingart, B. Koel, Visualizing zinc dendrites in minimal architecture zinc bromine batteries via in-house transmission X-ray microscopy. Microsc. Microanal. 27(S1), 2448–2451 (2021).
[139] W. Kautek, A. Conradi, C. Fabjan, G. Bauer, In situ ftir spectroscopy of the Zn–Br battery bromine storage complex at glassy carbon electrodes. Electrochim. Acta 47(5), 815–823 (2001).
[140] O. Nolte, I.A. Volodin, C. Stolze, M.D. Hager, U.S. Schubert, Trust is good, control is better: a review on monitoring and characterization techniques for flow battery electrolytes. Mater. Horiz. 8(7), 1866–1925 (2021).
[141] J. Geiser, H. Natter, R. Hempelmann, B. Morgenstern, K. Hegetschweiler, Photometrical determination of the state-of-charge in vanadium redox flow batteries part I: in combination with potentiometric titration. Z. Phys. Chem. Int. J. Res. Phys. Chem. Chem. Phys. 233(12), 1683–1694 (2019).
[142] D.G. Kwabi, A.A. Wong, M.J. Aziz, Rational evaluation and cycle life improvement of quinone-based aqueous flow batteries guided by in-line optical spectrophotometry. J. Electrochem. Soc. 165(9), A1770–A1776 (2018).
[143] S. Park, H. Kim, J. Chae, J. Chang, Electrochemical generation of single emulsion droplets and in situ observation of collisions on an ultramicroelectrode. J. Phys. Chem. C 120(7), 3922–3928 (2016).
[144] J. Xiao, Q.Y. Li, Y.J. Bi, M. Cai, B. Dunn et al., Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5(8), 561–568 (2020).
[145] R. Darling, K. Gallagher, W. Xie, L. Su, F. Brushett, Transport property requirements for flow battery separators. J. Electrochem. Soc. 163(1), A5029–A5040 (2015).
[146] D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 45(1–2), 67–86 (1999).
[147] C.X. Xie, T.Y. Li, C.Z. Deng, Y. Song, H.M. Zhang et al., A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 13(1), 135–143 (2020).
[148] C.X. Xie, Y. Liu, W.J. Lu, H.M. Zhang, X.F. Li, Highly stable zinc–iodine single flow batteries with super high energy density for stationary energy storage. Energy Environ. Sci. 12(6), 1834–1839 (2019).
[149] T.I. Evans, R.E. White, A review of mathematical-modeling of the zinc bromine flow cell and battery. J. Electrochem. Soc. 134(11), 2725–2733 (1987).
[150] J. Holmes, R.E. White, P.G. Grimes, R.J. Bellows, in Electrochemical Cell Design. ed. by R.E. White (Springer, New York, 1984), pp.293–309
[151] B. Koo, D. Lee, J. Yi, C.B. Shin, D.J. Kim et al., Modeling the performance of a zinc/bromine flow battery. Energies 12(6), 1159 (2019).
[152] A.A. Shah, H. Al-Fetlawi, F.C. Walsh, Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochim. Acta 55(3), 1125–1139 (2010).
[153] M. Schneider, G.P. Rajarathnam, M.E. Easton, A.F. Masters, T. Maschmeyer et al., The influence of novel bromine sequestration agents on zinc/bromine flow battery performance. RSC Adv. 6(112), 110548–110556 (2016).
[154] S.J. Jin, Y. Jing, D.G. Kwabi, Y.L. Ji, L.C. Tong et al., A water-miscible quinone flow battery with high volumetric capacity and energy density. ACS Energy Lett. 4(6), 1342–1348 (2019).
[155] B. Sundén, Hydrogen, Batteries and Fuel Cells (Elsevier, London, 2019), pp.57–79