• Chinese Journal of Lasers
  • Vol. 44, Issue 3, 300001 (2017)
Chi Nan, Lu Xingyu, Wang Can, and Zhou Yingjun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201744.0300001 Cite this Article Set citation alerts
    Chi Nan, Lu Xingyu, Wang Can, Zhou Yingjun. High-Speed Visible Light Communication Based on LED[J]. Chinese Journal of Lasers, 2017, 44(3): 300001 Copy Citation Text show less
    References

    [1] Tanaka Y, Haruyama S, Nakagawa M. Wireless optical transmissions with white colored LED for wireless home links[C]. The 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2000: 6866645.

    [2] Conti J P. What you see is what you send[J]. Engineering & Technology, 2008, 11: 66-67.

    [3] Kottke C, Habel K, Grobe L, et al. Single-channel wireless transmission at 806 Mbit/s using a white-light LED and a PIN-based receiver[C]. 14th IEEE International Conference on Transparent Optical Networks, 2012: 12908328.

    [4] Khalid A M, Cossu G, Corsini R, et al. 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation[J]. IEEE Photonics Journal, 2012, 4(5): 1465-1473.

    [5] Le Minh H, O′Brien D, Faulkner G, et al. 100-Mb/s NRZ visible light communications using a postequalized white LED[J]. IEEE Photonics Technology Letters, 2009, 21(15): 1063-1065.

    [6] Azhar A H, Tran T A, O′Brien D. Demonstration of high-speed data transmission using MIMO-OFDM visible light communications[C]. IEEE Globecom Workshops, 2010: 11774503.

    [7] Vucic J, Kottke C, Habel K, et al. 803 Mbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary[C]. Optical Fiber Communication Conference, 2011: OWB6.

    [8] Azhar A H, Tran T A, O′Brien D. Demonstration of high-speed data transmission using MIMO-OFDM visible light communications[C]. IEEE Globecom Workshops, 2010: 11774503 .

    [9] Haigh P A, Chvojka P, Zvanovec S, et al. Experimental verification of visible light communications based on multi-band CAP modulation[C]. Optical Fiber Communication Conference, 2015: Tu2G.2.

    [10] Wu F M, Lin C T, Wei C C, et al. 3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation[C]. Optical Fiber Communication Conference, 2013: OTh1G.4.

    [11] Wang Y, Tao L, Huang X, et al. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer[J]. IEEE Photonics Journal, 2015, 7(6): 15568083.

    [12] Wu F M, Lin C T, Wei C C, et al. 1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation[J]. IEEE Photonics Technology Letters, 2012, 24(19): 1730-1732.

    [13] Wang Y, Tao L, Wang Y, et al. High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization[J]. IEEE Communications Letters, 2014, 18(10): 1719-1722.

    [14] Wang Y, Tao L, Huang X, et al. Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer[J]. IEEE Photonics Journal, 2015, 7(3): 7901907.

    [15] Wang Y, Huang X, Tao L, et al. 1.8-Gb/s WDM visible light communication over 50-meter outdoor free space transmission employing CAP modulation and receiver diversity technology[C]. Optical Fiber Communication Conference, 2015: M2F.2.

    [16] Huang X, Chen S, Wang Z, et al. 2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED[J]. IEEE Photonics Journal, 2015, 7(5): 7904008.

    [17] Fujimoto N, Mochizuki H. 477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit[C]. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, 2013: 13581859.

    [18] Huang X, Shi J, Li J, et al. 750 Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit[C]. Optical Fiber Communication Conference, 2015: Tu2G.1.

    [19] Huang X, Chen S, Wang Z, et al. 1.2 Gbit/s visible light transmission based on orthogonal frequency-division multiplexing using a phosphorescent white light-emitting diode and a pre-equalization circuit[J]. Chinese Optics Letters, 2015, 13(10): 100602.

    [20] Chi Nan. Key devices and applications of LED visible light communication[M]. Beijing: Posts & Telecom Press, 2015: 8.

    [21] Langer K D, Vucic J, Kottke C, et al. Advances and prospects in high-speed information broadcast using phosphorescent white-light LEDs[C]. 11th International Conference on Transparent Optical Networks, 2009: 10803391.

    [22] Le Minh H, O′Brien D, Faulkner G, et al. High-speed visible light communications using multiple-resonant equalization[J]. IEEE Photonics Technology Letters, 2008, 20(14): 1243-1245.

    [23] Shrestha N, Sohail M, Viphavakit C, et al. Demonstration of visible light communications using RGB LEDs in an indoor environment[C]. International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, 2010: 11390377.

    [24] Kottke C, Habel K, Grobe L, et al. Single-channel wireless transmission at 806 Mbit/s using a white-light LED and a PIN-based receiver[C]. 14th International Conference on Transparent Optical Networks, 2012: 12908328.

    [25] Li J H, Huang X X, Ji X M, et al. An integrated PIN-array receiver for visible light communication[J]. Journal of Optics, 2015, 17(10): 105805.

    [26] Vitasek J, Vasinek V, Latal J, et al. Visible light communications with compound spectra[J]. Optics Communications, 2016, 363: 63-68.

    [27] Vitta P, Pobedinskas P, Zukauskas A. Phosphor thermometry in white light-emitting diodes[J]. IEEE Photonics Technology Letters, 2007, 19(6): 399-401.

    [28] Shionoya S, Yen W M, Yamamoto H. Phosphor handbook[M]. Boca Raton: CRC Press, 2006: 978.

    [29] Held G. Introduction to light emitting diode technology and applications[M]. Boca Raton: CRC Press, 2009: 192.

    [30] Schubert E F, Gessmann T, Kim J K. Light emitting diodes[M]. Cambridge: Cambridge University Press, 2006: 434.

    [31] Sun Z, Teng D, Liu L, et al. A power-type single GaN-based blue LED with improved linearity for 3 Gb/s free-space VLC without pre-equalization[J]. IEEE Photonics Journal, 2016, 8(3): 7904308.

    [32] Chi N, Shi J, Zhou Y, et al. High speed LED based visible light communication for 5 G wireless backhaul[C]. Photonics Society Summer Topical Meeting Series, 2016: 16263477.

    CLP Journals

    [1] Yan Limin, Wang Ziming. Improvement of RGBW Sub-Pixel Arrangement and Color Gamut Mapping Optimization Algorithm[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101102

    [2] Su Shi, Zhang Guoyu, Wang Lingyun, Wang Yiwen, Wang Jiqiang, Wang Lihui. Solar Simulators Based on Light Emitting Diodes[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70003

    [3] Huang Aiping, Tao Linwei. Adaptive Power Allocation Algorithm for Wireless Optical Multiple Input Multiple Output Communication System with Spatial Modulation[J]. Chinese Journal of Lasers, 2017, 44(10): 1006001

    [4] Song Xiaoqing, Wei Youcai, Zhao Zixu, Wang Muyu. Research Progress on Hardware Pre-Equalization Technology for High-Speed Visible Light Communication[J]. Laser & Optoelectronics Progress, 2017, 54(8): 80003