• Progress in Geography
  • Vol. 39, Issue 4, 670 (2020)
Zhuolin SHI and Chang HUANG*
Author Affiliations
  • Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an 710127, China
  • show less
    DOI: 10.18306/dlkxjz.2020.04.014 Cite this Article
    Zhuolin SHI, Chang HUANG. Recent advances in remote sensing of river characteristics[J]. Progress in Geography, 2020, 39(4): 670 Copy Citation Text show less
    References

    [1] Palmer M, Ruhi A. Measuring earth's rivers[J]. Science, 361, 546-547(2018).

    [2] Bhavsar P D. Review of remote sensing applications in hydrology and water resources management in India[J]. Advances in Space Research, 4, 193-200(1984).

    [4] Schumann G, Moller D K. Microwave remote sensing of flood inundation[J]. Physics and Chemistry of the Earth, 83-84, 84-95(2015).

    [5] Huang C, Chen Y, Zhang S Q et al. Detecting, extracting, and monitoring surface water from space using optical sensors: A review[J]. Reviews of Geophysics, 56, 333-360(2018).

    [7] Smith L C. Satellite remote sensing of river inundation area, stage, and discharge: A review[J]. Hydrological Processes, 11, 1427-1439(1997).

    [8] Lyzenga D R. Passive remote sensing techniques for mapping water depth and bottom features[J]. Applied Optics, 17, 379-383(1978).

    [9] Schumann G, Bates P D, Horritt M S et al. Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models[J]. Reviews of Geophysics, 47(2009).

    [10] Hall A C, Schumann G, Bamber J L et al. Tracking water level changes of the Amazon Basin with space-borne remote sensing and integration with large scale hydrodynamic modelling: A review[J]. Physics and Chemistry of the Earth, 36, 223-231(2011).

    [12] Gholizadeh M H, Melesse A M, Reddi L. A comprehensive review on water quality parameters estimation using remote sensing techniques[J]. Sensors (Basel, Switzerland), 16(2016). https://www.ncbi.nlm.nih.gov/pubmed/27537896

    [13] Duguay C R, Bernier M, Gauthier Y et al. Remote sensing of lake and river ice[M]. Tedesco M. Remote sensing of the cryosphere. New York, USA: Wiley, 273-306(2014).

    [14] Sivapalan M. Prediction in ungauged basins: A grand challenge for theoretical hydrology[J]. Hydrological Processes, 17, 3163-3170(2003).

    [15] Ekeu-wei I T, Blackburn G A. Applications of open-access remotely sensed data for flood modelling and mapping in developing regions[J]. Hydrology, 5(2018).

    [16] Barton I J, Bathols J M. Monitoring floods with AVHRR[J]. Remote Sensing of Environment, 30, 89-94(1989).

    [17] Chen Y, Huang C, Ticehurst C et al. An evaluation of MODIS daily and 8-day composite products for floodplain and wetland inundation mapping[J]. Wetlands, 33, 823-835(2013).

    [18] Plumb E. River ice and flood detection products derived from Suomi NPP VIIRS satellite data to support hydrologic forecast operations in Alaska[report]. San Francisco, USA: AGU Fall Meeting(2015).

    [19] Li S, Sun D, Goldberg M D et al. Automatic near real-time flood detection using Suomi-NPP/VIIRS data[J]. Remote Sensing of Environment, 204, 672-689(2018).

    [20] Frazier P, Page K, Louis J et al. Relating wetland inundation to river flow using Landsat TM data[J]. International Journal of Remote Sensing, 24, 3755-3770(2003).

    [21] Acharya T D, Lee D H, Yang I T et al. Identification of water bodies in a Landsat 8 OLI image using a J48 decision tree[J]. Sensors (Basel, Switzerland), 16(2016). https://www.ncbi.nlm.nih.gov/pubmed/27420067

    [22] Du Y, Zhang Y, Ling F et al. Water bodies' mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band[J]. Remote Sensing, 8(2016). https://www.ncbi.nlm.nih.gov/pubmed/29629207

    [23] Yao F, Wang C, Dong D et al. High-resolution mapping of urban surface water using ZY-3 multi-spectral imagery[J]. Remote Sensing, 7, 12336-12355(2015).

    [24] Cooley S, Smith L, Stepan L et al. Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery[J]. Remote Sensing, 9(2017).

    [25] Manavalan P, Sathyanath P, Rajegowda G L. Digital image analysis techniques to estimate waterspread for capacity evaluations of reservoirs[J]. Photogrammetric Engineering and Remote Sensing, 59, 1389-1395(1993).

    [26] Ozesmi S L, Bauer M E. Satellite remote sensing of wetlands[J]. Wetlands Ecology and Management, 10, 381-402(2002).

    [29] Chen Y, Wang B, Pollino C A et al. Estimate of flood inundation and retention on wetlands using remote sensing and GIS[J]. Ecohydrology, 7, 1412-1420(2014).

    [30] Tulbure M G, Broich M, Stehman S V et al. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region[J]. Remote Sensing of Environment, 178, 142-157(2016).

    [31] Mohammadi A, Costelloe J F, Ryu D. Application of time series of remotely sensed normalized difference water, vegetation and moisture indices in characterizing flood dynamics of large-scale arid zone floodplains[J]. Remote Sensing of Environment, 190, 70-82(2017).

    [32] Fisher A, Flood N, Danaher T. Comparing landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment, 175, 167-182(2016).

    [35] Crist E P. A TM tasseled cap equivalent transformation for reflectance factor data[J]. Remote Sensing of Environment, 17, 301-306(1985).

    [36] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 17, 1425-1432(1996).

    [37] Xu H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 27, 3025-3033(2006).

    [38] Feyisa G L, Meilby H, Fensholt R et al. Automated water extraction index: A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 140, 23-35(2014).

    [39] Haertel V F, Shimabukuro Y E. Spectral linear mixing model in low spatial resolution image data[report]. Anchorage, USA: IEEE Conference in Anchorage(2005).

    [40] Huang C, Chen Y, Wu J P et al. An evaluation of Suomi NPP-VIIRS data for surface water detection[J]. Remote Sensing Letters, 6, 155-164(2015).

    [42] Huang C, Chen Y, Wu J P. DEM-based modification of pixel-swapping algorithm for enhancing floodplain inundation mapping[J]. International Journal of Remote Sensing, 35, 365-381(2014).

    [43] Huang C, Chen Y, Zhang S Q et al. Spatial downscaling of Suomi NPP-VIIRS image for lake mapping[J]. Water, 9(2017).

    [46] Yang K, Li M C, Liu Y X et al. River delineation from remotely sensed imagery using a multi-scale classification approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 4726-4737(2014).

    [48] Hsiao Y S, Hwang C, Cheng Y S et al. High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery[J]. Remote Sensing of Environment, 176, 69-83(2016).

    [49] Chu T, Lindenschmidt K E. Integration of space-borne and air-borne data in monitoring river ice processes in the Slave River, Canada[J]. Remote sensing of environment, 181, 65-81(2016).

    [50] Torres R, Snoeij P, Geudtner D et al. GMES Sentinel-1 mission[J]. Remote Sensing Environment, 120, 9-24(2012).

    [51] Brivio P A, Colombo R, Maggi M et al. Integration of remote sensing data and GIS for accurate mapping of flooded areas[J]. International Journal of Remote Sensing, 23, 429-441(2002).

    [52] Bonn F, Dixon R. Monitoring flood extent and forecasting excess runoff risk with RADARSAT-1 data[J]. Natural Hazards, 35, 377-393(2005).

    [55] Huang C, Chen Y, Zhang S Q et al. Surface water mapping from Suomi NPP-VIIRS imagery at 30 m resolution via blending with Landsat data[J]. Remote Sensing, 8(2016).

    [56] Huang C, Nguyen B D, Zhang S Q. A comparison of terrain indices toward their ability in assisting surface water mapping from Sentinel-1 data[J]. ISPRS International Journal of Geo-Information, 6(2017).

    [57] Irwin K, Beaulne D, Braun A et al. Fusion of SAR, optical imagery and airborne LiDAR for surface water detection[J]. Remote Sensing, 9(2017).

    [58] Slinski K M, Hogue T S, McCray J E. Active-passive surface water classification: A new method for high-resolution monitoring of surface water dynamics[J]. Geophysical Research Letters, 46, 4694-4704(2019).

    [61] Urban T J, Schutz B E, Neuenschwander A L. A survey of ICESat coastal altimetry applications: Continental coast, open ocean island, and inland river[J]. Terrestrial, Atmospheric and Oceanic Sciences, 19, 1-19(2008).

    [62] Markus T, Neumann T, Martino A et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environment, 190, 260-273(2017).

    [65] Wang C K, Philpot W D. Using airborne bathymetric LIDAR to detect bottom type variation in shallow waters[J]. Remote Sensing of Environment, 106, 123-135(2007).

    [67] Lyzenga D R. Shallow-water bathymetry using combined LiDAR and passive multispectral scanner data[J]. International Journal of Remote Sensing, 6, 115-125(1985).

    [68] Su H, Liu H, Wu Q. Prediction of water depth from multispectral satellite imagery: The regression Kriging alternative[J]. IEEE Geoscience & Remote Sensing Letters, 12, 2511-2515(2015).

    [73] Wagner C. A prograde Geosat exact repeat mission[J]. Journal of the Astronautical Sciences, 39, 313-326(1991).

    [74] Birkett C M. Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands[J]. Water Resources Research, 34, 1223-1240(1998).

    [75] Medina C, Gomez-Enri J, Alonso J et al. Water volume variations in lake Izabal (Guatemala) from in situ measurements and ENVISAT Radar Altimeter (RA-2) and Advanced Synthetic Aperture Radar (ASAR) data products[J]. Journal of Hydrology, 382, 34-48(2010).

    [76] Kleinherenbrink M, Lindenbergh R C, Ditmar P G. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms[J]. Journal of Hydrology, 521, 119-131(2015).

    [77] Villadsen H, Andersen O B, Stenseng L et al. CryoSat-2 altimetry for river level monitoring: Evaluation in the Ganges-Brahmaputra River basin[J]. Remote Sensing of Environment, 168, 80-89(2015).

    [78] Musa Z, Popescu I, Mynett A. A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation[J]. Hydrology and Earth System Sciences, 19, 3755-3769(2015).

    [79] Koblinsky C J, Clarke R T, Brenner A C et al. Measurement of river level variations with satellite altimetry[J]. Water Resources Research, 29, 1839-1848(1993).

    [81] Smith L C, Isacks B L, Forster R R et al. Estimation of discharge from braided glacial rivers using ERS1 synthetic aperture radar: First results[J]. Water Resources Research, 31, 1325-1329(1995).

    [82] Brakenridge G R, Tracy B T, Knox J C. Orbital SAR remote sensing of a river flood wave[J]. International Journal of Remote Sensing, 19, 1439-1445(1998).

    [83] Alsdorf D, Birkett C, Dunne T et al. Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry[J]. Geophysical Research Letters, 28, 2671-2674(2001).

    [84] Sichangi A, Wang L, Yang K et al. Estimating continental river basin discharges using multiple remote sensing datasets[J]. Remote Sensing of Environment, 179, 36-53(2016).

    [85] Huang Q, Long D, Du M et al. Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the Upper Brahmaputra River[J]. Remote Sensing of Environment, 219, 115-134(2018).

    [86] Brakenridge G R, Nghiem S V, Anderson E et al. Orbital microwave measurement of river discharge and ice status[J]. Water Resources Research, 43(2007).

    [87] Brakenridge G R, Nghiem S V, Anderson E et al. Space-based measurement of river runoff[J]. Eos Transactions American Geophysical Union, 86, 185-188(2013).

    [88] Tarpanelli A, Brocca L, Lacava T et al. Toward the estimation of river discharge variations using MODIS data in ungauged basins[J]. Remote Sensing of Environment, 136, 47-55(2013).

    [89] Bjerklie D M, Dingman S L, Vorosmarty C J et al. Evaluating the potential for measuring river discharge from space[J]. Journal of Hydrology, 278, 17-38(2003).

    [90] Sichangi A, Wang L, Hu Z. Estimation of river discharge solely from remote-sensing derived data: An initial study over the Yangtze River[J]. Remote Sensing, 10(2018).

    [91] Bjerklie D M, Birkett C M, Jones J W et al. Satellite remote sensing estimation of river discharge: Application to the Yukon River Alaska[J]. Journal of Hydrology, 561, 1000-1018(2018).

    [92] Leopold L B, Maddock Jr T. The hydraulic geometry of stream channels and some physiographic implications[report]. USGS Professional Paper(1953).

    [93] Gleason C J, Smith L C, Lee J. Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: Sensitivity to river form and optimization parameters[J]. Water Resources Research, 50, 9604-9619(2014).

    [94] Gleason C J, Smith L C. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry[J]. PNAS, 111, 4788-4791(2014).

    [95] Pavelsky T M, Smith L C. RivWidth: A software tool for the calculation of river widths from remotely sensed imagery[J]. IEEE Geoscience and Remote Sensing Letters, 5, 70-73(2008).

    [96] Isikdogan F, Bovik A, Passalacqua P. Automatic channel network extraction from remotely sensed images by singularity analysis[J]. IEEE Geoscience and Remote Sensing Letters, 12, 2218-2221(2015).

    [97] Gorelick N, Hancher M, Dixon M et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 202, 18-27(2017).

    [98] Isikdogan F, Bovik A, Passalacqua P. RivaMap: An automated river analysis and mapping engine[J]. Remote Sensing Environment, 202, 88-97(2017).

    [99] Kugler Z, De Groeve T. The global flood detection system[report]. Ispra, Italy: Joint Research Centre Scientific and Technical Reports(2007).

    [100] De Groeve T, Brakenridge R G, Paris S. Global flood detection system: Data product specifications[report]. Ispra, Italy: Joint Research Centre Technical Report(2015).

    [101] Khan S I, Hong Y, Gourley J et al. Multi-sensor imaging and space-ground cross-validation for 2010 flood along Indus River, Pakistan[J]. Remote Sensing, 6, 2393-2407(2014).

    [102] Shi Z L, Huang C. Evaluation of discharge estimation using global flood detection system[C]. IEEE. Proceedings of the 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics). Hangzhou, China(2018).

    [103] Biancamaria S, Lettenmaier D P, Pavelsky T M. The SWOT mission and its capabilities for land hydrology[J]. Surveys in Geophysics, 37, 307-337(2016).

    [104] Hagemann M W, Gleason C J, Durand M T. BAM: Bayesian AMHG-Manning inference of discharge using remotely sensed stream width, slope, and height[J]. Water Resources Research, 53, 9692-9707(2017).

    [105] Brisset P, Monnier J, Garambois P A et al. On the assimilation of altimetric data in 1D Saint-Venant River flow models[J]. Advances in Water Resources, 119, 41-59(2018).

    [106] Tuozzolo S, Lind G, Overstreet B et al. Estimating river discharge with swath altimetry: A proof of concept using AirSWOT observations[J]. Geophysical Research Letters, 46, 1459-1466(2019).

    [107] Pitcher L H, Pavelsky T M, Smith L C et al. AirSWOT InSAR mapping of surface water elevations and hydraulic gradients across the Yukon Flats basin, Alaska[J]. Water Resources Research, 55, 937-953(2018).

    [108] Altenau E H, Pavelsky T M, Moller D et al. Temporal variations in river water surface elevation and slope captured by AirSWOT[J]. Remote Sensing of Environment, 224, 304-316(2019).

    [111] Holyer R J. Toward universal multispectral suspended sediment algorithms[J]. Remote Sensing Environment, 7, 323-338(1978).

    [119] Prowse T, Alfredsen K, Beltaos S et al. Effects of changes in Arctic lake and river ice[J]. AMBIO, 40, 63-74(2011).

    [121] Prowse T, Alfredsen K, Beltaos S et al. Arctic freshwater ice and its climatic role[J]. AMBIO, 40, 46-52(2011).

    [123] Pavelsky T M, Smith L C. Spatial and temporal patterns in Arctic river ice breakup observed with MODIS and AVHRR time series[J]. Remote Sensing of Environment, 93, 328-338(2004).

    [124] Chaouch N, Temimi M, Romanov P et al. An automated algorithm for river ice monitoring over the Susquehanna River using the MODIS data[J]. Hydrological Processes, 28, 62-73(2014).

    [125] Gauthier Y, Hardy S, Gutiérrez C et al. IceFRONT: Integration of radar and optical images for operational river freeze-up monitoring[report]. Quebec, Canada: CGU HS Committee on River Ice Processes and the Environment 18thWorkshop on River Ice(2015).

    [126] Gatto L W. Monitoring river ice with landsat images[J]. Remote Sensing of Environment, 32, 1-16(1990).

    [127] Unterschultz K, Vander Sanden J, Hicks F. Potential of RADARSAT-1 for the monitoring of river ice: Results of a case study on the Athabasca River at Fort McMurray, Canada[J]. Cold Regions Science and Technology, 55, 238-248(2009).

    [128] Chu T, Das A, Lindenschmidt K E. Monitoring the variation in ice-cover characteristics of the Slave River, Canada using RADARSAT-2 data: A case study[J]. Remote Sensing, 7, 13664-13691(2015).

    [129] Łoś H, Pawłowski B. The use of sentinel-1 imagery in the analysis of river ice phenomena on the lower vistula in the 2015-2016 winter season[report]. Jachranka Village, Poland: IEEE Signal Processing Symposium(2017).

    [130] Lewis A, Oliver S, Lymburner L et al. The Australian geoscience data cube: Foundations and lessons learned[J]. Remote Sensing of Environment, 202, 276-292(2017).

    Zhuolin SHI, Chang HUANG. Recent advances in remote sensing of river characteristics[J]. Progress in Geography, 2020, 39(4): 670
    Download Citation