• High Power Laser and Particle Beams
  • Vol. 36, Issue 7, 073001 (2024)
Jianguo Wang
Author Affiliations
  • National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Instituteof Nuclear Technology, Xi’an 710024, China
  • show less
    DOI: 10.11884/HPLPB202436.240105 Cite this Article
    Jianguo Wang. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36(7): 073001 Copy Citation Text show less
    References

    [1] Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of highaltitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010

    [2] Wang Jianguo, Liu Li, Niu Shengli, . Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 14, 010101(2023).

    [3] Lee K S H. EMP interaction: principles, techniques, reference data[M]. Washington: Hemisphere Publishing Cpation, 1986.

    [4] Baum C E. From the electromagnetic pulse to high-power electromagnetics[J]. Proceedings of the IEEE, 80, 789-817(1992).

    [5] Li Ya, Liu Li, Wang Jianguo, et al. Numerical simulation of the intermediate-time high-altitude electromagnetic pulse[J]. IEEE Transactions on Electromagnetic Compatibility, 64, 1423-1430(2022).

    [6] Karzas W J, Latter R. The electromagnetic signal due to the interaction of nuclear explosions with the earth’s magnetic field[J]. Journal of Geophysical Research, 67, 4635-4640(1962).

    [7] Gao Yinjun, Yan Kai, Tian Zhou, . Numerical calculation of early fireball radiation spectrum in strong explosion[J]. Explosion and Shock Waves, 35, 289-295(2015).

    [8] Gao Yinjun, Yan Kai, Tian Zhou, . Investigation of fireball radiation power-time history in strong explosion basing on radiation hydrodynamics calculation[J]. Chinese Journal of Solid Mechanics, 33, 95-98(2013).

    [9] Yang Bin, Niu Shengli, Zhu Jinhui, . Research of the early debris expansion from high-altitude nuclear explosions[J]. Acta Physica Sinica, 61, 202801(2012).

    [10] Tao Yinglong, Wang Jianguo, Niu Shengli, . Numerical simulation of the ionization effects of prompt radiation from high-altitude nuclear explosions[J]. Acta Physica Sinica, 59, 5914-5920(2010).

    [11] Niu Shengli, Luo Xudong, Wang Jianguo, . Atmospheric diffusion loss of radiation belt trapped electrons injected by high altitude nuclear detonation[J]. Chinese Journal of Computational Physics, 28, 569-575(2011).

    [12] Gu Xudong, Zhao Zhengyu, Ni Binbin, . Numerical simulation of the formation of artificial radiation belt caused by high altitude nuclear detonation[J]. Acta Physica Sinica, 58, 5871-5878(2009).

    [13] Qiao Dengjiang. Introduction to the physics of nuclear explosion[M]. Beijing: Defense Industry Press, 2003

    [14] Meng Cui. Numerical simulation of the HEMP environment[J]. IEEE Transactions on Electromagnetic Compatibility, 55, 440-445(2013).

    [15] Li Ya, Wang Jianguo, Zuo Yinghong, et al. Simulation of high-altitude nuclear electromagnetic pulse using a modified model of scattered gamma[J]. IEEE Transactions on Nuclear Science, 67, 2474-2480(2020).

    [16] Campione S, Warne L K, Halligan M, et al. Modeling E1E2 EMP events on power grids[R]. S20188324PE, Albuquerque: Sia National Lab. , 2018.

    [17] Foster Jr J S, Gjelde E, Graham W R, et al. Rept of the commission to assess the threat to the United States from electromagic pulse (EMP) attack[R]. 2008.

    [18] Pierre B J, Krofcheck D J, Hoffman M J, et al. Modeling framewk f bulk electric grid impacts from HEMP E1 E3 effects (tasks 3.1 final rept)[R]. S20210865, Albuquerque: Sia National Lab. , 2021.

    [19] Hton R. Magohydrodynamic electromagic pulse assessment of the continental US electric grid[R]. Electric Power Research Institute, 2017.

    [20] Li Ya, Wang Jianguo, Zuo Yinghong, et al. Sensitivity analysis of conductivity models in simulation of high-altitude electromagnetic pulse[J]. IEEE Transactions on Electromagnetic Compatibility, 64, 2094-2103(2022).

    [21] Xie Haiyan. Research progress of system level HEMP coupling analysis methods[J]. Modern Applied Physics, 14, 020102(2023).

    [22] Wang Jianguo, Liu Guozhi, Zhou Jinshan. Investigations on function for linear coupling of microwaves into slots[J]. High Power Laser and Particle Beams, 15, 1093-1099(2003).

    [23] Chen Juan, Wang Jianguo. A three-dimensional semi-implicit FDTD scheme for calculation of shielding effectiveness of enclosure with thin slots[J]. IEEE Transactions on Electromagnetic Compatibility, 49, 354-360(2007).

    [24] Zhang Junjie, Peng Guoliang, Ren Zeping. Plasma simulation for early-stage debris in high altitude nuclear explosions[J]. Modern Applied Physics, 14, 020401(2023).

    [25] Qin Feng, Chen Wei, Mao Congguang, . Review of high altitude electromagnetic pulse effects on power system[J]. Modern Applied Physics, 14, 030102(2023).

    [26] Wilson C. High altitude electromagic pulse (HEMP) high power microwave (HPM) devices: threat assessments[R]. Washington: Congressional Research Service, 2004.

    [27] Gilbert J, Kappenman J, Radasky W, et al. The latetime (E3) highaltitude electromagic pulse (HEMP) its impact on the U. S. power grid[R]. MetaR321, Metatech Cpation, 2010.

    [28] IEC 6100029: 1996, Electromagic compatibility (EMC) part 2: environment section 9: deion of HEMP environment radiated disturbance. Basic EMC publication[S].

    [29] Liu Li, Zuo Yinghong, Niu Shengli, . A varaince reduction method for simulating the long-distance transport of neutrons and secondary γ in high-altitude atmosphere by Monte Carlo method[J]. Modern Applied Physics, 13, 010202(2022).

    [30] Zhu Jinhui, Zuo Yinghong, Liu Li, . Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 14, 030104(2023).

    [31] Peng Guoliang, Zhang Junjie. Hydro-magneto-PIC hybrid model for description of debris motion in high altitude nuclear explosions[J]. Acta Physica Sinica, 70, 180703(2021).

    [32] Keenan B D, Le A, Winske D, et al. Hybrid particle-in-cell simulations of electromagnetic coupling and waves from streaming burst debris[J]. Physics of Plasmas, 29, 012107(2022).

    [33] Belyaev M A, Larson D J, Cohen B I, et al. Topanga: a kinetic ion plasma code for large-scale ionospheric simulations on magnetohydrodynamic timescales[J]. Physics of Plasmas, 31, 012902(2024).

    [34] Le A, Stanier A, Yin Lin, et al. Hybrid-VPIC: an open-source kinetic/fluid hybrid particle-in-cell code[J]. Physics of Plasmas, 30, 063902(2023).

    CLP Journals

    [1] Minzhou Liu, Yifan Yang, Qing Dou, Yanzhao Xie, Shuowei Wang, Wenzhuo Wang. Effects of extreme geoelectric fields on power system voltage stability considering complex earth conductivity structures[J]. High Power Laser and Particle Beams, 2025, 37(6): 066001

    [2] Jiaxin Wei, Jianhong Hao, Qiang Zhao, Jieqing Fan, Fang Zhang, Bixi Xue, Zhiwei Dong. Simulation study on radiation damage effects of GaAs solar cells in space[J]. High Power Laser and Particle Beams, 2025, 37(3): 035022