• Advanced Photonics
  • Vol. 6, Issue 4, 046002 (2024)
Xingyuan Lu1,†, Zhuoyi Wang1, Qiwen Zhan2,*, Yangjian Cai3,4,*, and Chengliang Zhao1,*
Author Affiliations
  • 1Soochow University, School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Suzhou, China
  • 2University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Shanghai, China
  • 3Shandong Normal University, School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan, China
  • 4East China Normal University, Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.6.4.046002 Cite this Article Set citation alerts
    Xingyuan Lu, Zhuoyi Wang, Qiwen Zhan, Yangjian Cai, Chengliang Zhao, "Coherence entropy during propagation through complex media," Adv. Photon. 6, 046002 (2024) Copy Citation Text show less
    References

    [1] E. Wolf. Introduction to the Theory of Coherence and Polarization of Light(2007).

    [2] E. Wolf. New theory of partial coherence in the space frequency domain - Part I. J. Opt. Soc. Am., 72, 343-351(1982).

    [3] G. Gbur, T. D. Visser. The structure of partially coherent fields. Prog. Opt., 55, 285-341(2010).

    [4] J. W. Goodman. Statistical Optics(2015).

    [5] Y. Peng et al. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration. Sci. Adv., 7, eabg5040(2021).

    [6] B. Redding, M. A. Choma, H. Cao. Speckle-free laser imaging using random laser illumination. Nat. Photonics, 6, 355-359(2012).

    [7] S. Knitter et al. Coherence switching of a degenerate VECSEL for multimodality imaging. Optica, 3, 403-406(2016).

    [8] A. M. Paniagua-Diaz et al. Blind ghost imaging. Optica, 6, 460-464(2019).

    [9] Y. Cai, S. Y. Zhu. Ghost imaging with incoherent and partially coherent light radiation. Phys. Rev. E, 71, 056607(2005).

    [10] G. Gbur. Partially coherent beam propagation in atmospheric turbulence. J. Opt. Soc. Am. A, 31, 2038-2045(2014).

    [11] Y. Deng et al. Characteristics of high-power partially coherent laser beams propagating upwards in the turbulent atmosphere. Opt. Express, 28, 27927-27939(2020).

    [12] D. Kip et al. Modulation instability and pattern formation in spatially incoherent light beams. Science, 290, 495-498(2000).

    [13] X. Zhu et al. Generation of stochastic structured light beams with controllable beam parameters. ACS Photonics, 10, 2272-2279(2022).

    [14] C. Vanneste, P. Sebbah, H. Cao. Lasing with resonant feedback in weakly scattering random systems. Phys. Rev. Lett., 98, 143902(2007).

    [15] D. Li, D. Pacifici. Strong amplitude and phase modulation of optical spatial coherence with surface plasmon polaritons. Sci. Adv., 3, e1700133(2017).

    [16] L. Liu et al. Spatial coherence manipulation on the disorder-engineered statistical photonic platform. Nano Lett., 22, 6342-6349(2022).

    [17] M. Koivurova et al. Coherence switching with metamaterials. Phys. Rev. Lett., 127, 153902(2021).

    [18] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [19] I. Nape et al. Revealing the invariance of vectorial structured light in complex media. Nat. Photonics, 16, 538-546(2022).

    [20] K. Singh et al. A robust basis for multi-bit optical communication with vectorial light. Laser Photonics Rev., 17, 2200844(2023).

    [21] A. Klug, C. Peters, A. Forbes. Robust structured light in atmospheric turbulence. Adv. Photonics, 5, 016006(2023).

    [22] Z. Yang et al. Digital spiral object identification using random light. Light Sci. Appl., 6, e17013(2017).

    [23] L. Waller, G. Situ, J. W. Fleischer. Phase-space measurement and coherence synthesis of optical beams. Nat. Photonics, 6, 474-479(2012).

    [24] Y. Shao et al. Spatial coherence measurement and partially coherent diffractive imaging using self-referencing holography. Opt. Express, 26, 4479-4490(2018).

    [25] Z. Huang et al. Measuring complex degree of coherence of random light fields with generalized Hanbury Brown–Twiss experiment. Phys. Rev. Appl., 13, 044042(2020).

    [26] H. Gamo. Thermodynamic entropy of partially coherent light beams. J. Phys. Soc. Jpn., 19, 1955-1961(1964).

    [27] K. Kim, D. Y. Park, J. G. Kim. Entropic measure of global coherence of a fluctuating field. J. Korean Phys. Soc., 35, 186-189(1999).

    [28] M. Harling et al. Reversible inter-degree-of-freedom optical-coherence conversion via entropy swapping. Opt. Express, 30, 29584-29597(2022).

    [29] M. Harling et al. Locked entropy in partially coherent optical fields. Phys. Rev. A, 109, L021501(2024).

    [30] C. Okoro et al. Demonstration of an optical-coherence converter. Optica, 4, 1052-1058(2017).

    [31] X. Lu et al. Four-dimensional experimental characterization of partially coherent light using incoherent modal decomposition. Nanophotonics, 12, 3463-3470(2023).

    [32] F. Gori et al. Beam coherence-polarization matrix. Pure Appl. Opt., 7, 941(1998).

    [33] F. Gori et al. Coherent-mode decomposition of partially polarized, partially coherent sources. J. Opt. Soc. Am. A, 20, 78-84(2003).

    [34] J. H. Eberly, X. F. Qian, A. N. Vamivakas. Polarization coherence theorem. Optica, 4, 1113-1114(2017).

    [35] B. L. Moisewitsch. Integral Equations(2011).

    [36] F. Wang et al. Three modal decompositions of Gaussian Schell-model sources: comparative analysis. Opt. Express, 29, 29676-29689(2021).

    [37] R. French, S. Gigan, O. L. Muskens. Speckle-based hyperspectral imaging combining multiple scattering and compressive sensing in nanowire mats. Opt. Lett., 42, 1820-1823(2017).

    [38] M. Mazilu et al. Random super-prism wavelength meter. Opt. Lett., 39, 96-99(2014).

    [39] F. Wang, O. Korotkova. Convolution approach for beam propagation in random media. Opt. Lett., 41, 1546-1549(2016).

    [40] L. Chen. Quantum discord of thermal two-photon orbital angular momentum state: mimicking teleportation to transmit an image. Light Sci. Appl., 10, 148(2021).

    [41] A. Chong et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics, 14, 350-354(2020).

    [42] G. Gibson et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [43] H. Brug. Efficient Cartesian representation of Zernike polynomials in computer memory. Proc. SPIE, 3190, 382-392(1997).

    [44] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108(2020).

    [45] L. Gong et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl., 8, 27(2019).

    [46] Y. Zhang et al. Generating a twisted Gaussian Schell-model beam with a coherent-mode superposition. Opt. Express, 29, 41964-41974(2021).

    [47] J. Miao et al. Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method. Phys. Rev. B, 67, 174104(2003).

    [48] A. Rana et al. Potential of attosecond coherent diffractive imaging. Phys. Rev. Lett., 125, 086101(2020).

    [49] E. Wolf. New spectral representation of random sources and of the partially coherent fields that they generate. Opt. Commun., 38, 3-6(1981).

    [50] A. Starikov, E. Wolf. Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields. J. Opt. Soc. Am., 72, 923-928(1982).

    Xingyuan Lu, Zhuoyi Wang, Qiwen Zhan, Yangjian Cai, Chengliang Zhao, "Coherence entropy during propagation through complex media," Adv. Photon. 6, 046002 (2024)
    Download Citation