• Acta Geographica Sinica
  • Vol. 75, Issue 1, 68 (2020)
Xing GAO1、1, Shichang KANG2、2, Qingsong LIU3、3, Pengfei CHEN2、2, and Zongqi DUAN1、1、4、4
Author Affiliations
  • 1State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 1中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
  • 2State Key Laboratory of Cryospheric Science, Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China
  • 2中国科学院西北生态环境资源研究院 冰冻圈与全球变化研究室,兰州 730000
  • 3Department of Marine Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
  • 3南方科技大学海洋科学与工程系,深圳 518055
  • 4The Geographical Society of China, Beijing 100101, China
  • 4中国地理学会,北京 100101
  • show less
    DOI: 10.11821/dlxb202001006 Cite this Article
    Xing GAO, Shichang KANG, Qingsong LIU, Pengfei CHEN, Zongqi DUAN. Magnetic characteristics of Qiangyong Co Lake sediments, southern Tibetan Plateau and its environmental significance during 1899-2011[J]. Acta Geographica Sinica, 2020, 75(1): 68 Copy Citation Text show less
    References

    [2] Yin Xiufeng, de Foy Benjamin, Wu Kunpeng et al. Gaseous and particulate pollutants in Lhasa, Tibet during 2013-2017: Spatial variability, temporal variations and implications[J]. Environmental Pollution, 253, 68-77(2019).

    [4] Zhu L P, Lü X M, Wang J et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM[J]. Scientific Reports, 5, 13318(2015).

    [6] Li Chaoliu, Kang Shichang, Cong Zhiyuan. Elemental composition of aerosols collected in the glacier area on Nyainqêntanglha Range, Tibetan Plateau, during summer monsoon season[J]. Chinese Science Bulletin, 52, 3436-3442(2007).

    [8] Kang S C, Zhang Q G, Qian Y et al. Linking atmospheric pollution to cryospheric change in the Third Pole region: Current progress and future prospects[J]. National Science Review, 6, 796-809(2019).

    [9] Wang X, Ren J, Gong P et al. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: A 5-year air monitoring study[J]. Atmospheric Chemistry and Physics, 16, 6901-6911(2016).

    [11] Huang J, Kang S, Ma M et al. Accumulation of atmospheric mercury in glacier cryoconite over western China[J]. Environmental Science & Technology, 53, 6632-6639(2019).

    [12] Yang H D, Battarbee R W, Turner S D et al. Historical reconstruction of mercury pollution across the Tibetan Plateau using lake sediments[J]. Environmental Science & Technology, 44, 2918-2924(2010).

    [13] Kang S C, Huang J, Wang F Y et al. Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau[J]. Environmental Science & Technology, 50, 2859-2869(2016).

    [16] Wan X, Kang S C, Li Q L et al. Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: Influence of biomass burning[J]. Atmospheric Chemistry and Physics, 17, 8867-8885(2017).

    [17] Xu B, Cao J, Hansen J et al. Black soot and the survival of Tibetan glaciers[C]. Proceedings of the National Academy of Sciences, 106, 22114-22118(2009).

    [18] Wang Mo, Xu Baiqing, Kaspari Susan et al. Variation of black carbon from a Muztagata ice core during 1868-2000 and its biomass contribution[J]. Atmospheric Environment, 115, 79-88(2015).

    [19] Li C, Bosch C, Kang S et al. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers[J]. Nature Communications, 7, 12574(2016).

    [20] Chen P F, Kang S C, Li C L et al. Carbonaceous aerosol characteristics on the Third Pole: A primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network[J]. Environmental Pollution, 253, 49-60(2019).

    [21] Wu G M, Wan X, Gao S P et al. Humic-like substances (HULIS) in aerosols of Central Tibetan Plateau (Nam Co, 4730 m asl): Abundance, light absorption properties, and sources[J]. Environmental Science & Technology, 52, 7203-7211(2018).

    [24] Zhang F, Yan X D, Zeng C et al. Influence of traffic activity on heavy metal concentrations of roadside farmland soil in mountainous areas[J]. International Journal of Environmental Research and Public Health, 9, 1715-1731(2012).

    [31] Wang X P, Yang H, Gong P et al. One century sedimentary records of polycyclic aromatic hydrocarbons, mercury and trace elements in the Qinghai Lake, Tibetan Plateau[J]. Environmental Pollution, 158, 3065-3070(2010).

    [33] Liu Q, Roberts A P, Larrasoaña J C et al. Environmental magnetism: Principles and applications[J]. Reviews of Geophysics, 50, RG4002(2012).

    [36] Day R, Fuller M, Schmidt VA. Hysteresis properties of titanomagnetites: Grainsize and compositional dependence[J]. Physics of the Earth and Planetary Interiors, 13, 260-267(1977).

    [37] Dunlop D J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data[J]. Journal of Geophysical Research, 107(2002).

    [38] Dunlop D J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils[J]. Journal of Geophysical Research, 107(2002).

    [40] Kruiver P P, Dekkers M J, Heslop D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization[J]. Earth and Planetary Science Letters, 189, 269-276(2001).

    [41] Heslop D, Dekkers M J, Kruiver P P et al. Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm[J]. Geophysical Journal International, 148, 58-64(2002).

    [43] Jackson M, Carter-Stiglitz B, Egli R et al. Characterizing the superparamagnetic grain distribution f (V, Hk) by thermal fluctuation tomography[J]. Journal of Geophysical Research: Solid Earth, 111, B12S07(2006).

    [44] Verwey E J. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperature[J]. Nature, 144, 327-328(1939).

    [45] Kosterov A. Low-temperature magnetization and AC susceptibility of magnetite: Effect of thermomagnetic history[J]. Geophysical Journal International, 154, 58-71(2003).

    [46] Muxworthy A R, McClelland E. Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective[J]. Geophysical Journal International, 140, 101-114(2000).

    [47] Torrent J, Barrón V. Diffuse reflectance spectroscopy//Ulery A L, Drees R. Methods of Soil Analysis Part 5: Mineralogical Methods[J]. Madison, WI: Soil Science Society of America, Inc., 367-387(2008).

    [48] Torrent J, Barrón V. Diffuse reflectance spectroscopy of iron oxides//Somasundaran P[J]. Encyclopedia of Surface and Colloid Science. New York: Marcel Dekker Inc, 1438-1446(2002).

    [50] Hu P, Liu Q, José Torrent et al. Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis[J]. Earth & Planetary Science Letters, 369-370, 271-283(2013).

    [51] Guo Wei, Huo Shouliang, Ding Wenjuan. Historical record of human impact in a lake of northern China: Magnetic susceptibility, nutrients, heavy metals and OCPs[J]. Ecological Indicators, 57, 74-81(2015).

    [52] Hanesch M, Scholger R, Rey D. Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves[J]. Atmospheric Environment, 37, 5125-5133(2003).

    [53] Hu Shouyun, Duan Xuemei, Shen Mingjie et al. Magnetic response to atmospheric heavy metal pollution recorded by dust-loaded leaves in Shougang industrial area, western Beijing[J]. Chinese Science Bulletin, 53, 1555-1564(2008).

    [54] Gautam P, Blaha U, Appel E. Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal[J]. Atmospheric Environment, 39, 2201-2211(2005).

    [55] Spiteri C, Kalinski V, Rösler W et al. Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: Correlation analysis between magnetic proxies and heavy metal contamination in soils[J]. Environmental Geology, 49, 1-9(2005).

    [56] Zhang Q, Huang J, Wang F et al. Mercury distribution and deposition in glacier snow over western China[J]. Environmental Science & Technology, 46, 5404-5413(2012).

    [57] Cong Z, Gao S, Zhao W et al. Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: Abundance, speciation and implications[J]. Cryosphere Discussions, 12, 3177-3186(2018).

    [58] Duan Zongqi, Gao Xing, Liu Qingsong et al. Magnetic characteristics of insoluble microparticles in ice core (Nojingkangsang) from the southern Tibetan Plateau and its environmental significance[J]. Science China Earth Sciences, 54, 1635-1642(2011).

    [59] Huang Jie, Kang Shichang, Zhang Qianggong et al. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau[J]. Environmental Pollution, 206, 518-526(2015).

    Xing GAO, Shichang KANG, Qingsong LIU, Pengfei CHEN, Zongqi DUAN. Magnetic characteristics of Qiangyong Co Lake sediments, southern Tibetan Plateau and its environmental significance during 1899-2011[J]. Acta Geographica Sinica, 2020, 75(1): 68
    Download Citation