• Optoelectronics Letters
  • Vol. 19, Issue 3, 144 (2023)
[in Chinese], [in Chinese]*, and [in Chinese]
Author Affiliations
  • College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
  • show less
    DOI: 10.1007/s11801-023-2158-2 Cite this Article
    [in Chinese], [in Chinese], [in Chinese]. Conversion efficiency of strained wurtzite InxGa1-xN/ZnSnN2 core/shell quantum dot solar cells under external electric field[J]. Optoelectronics Letters, 2023, 19(3): 144 Copy Citation Text show less
    References

    [1] SEROKA N S, TAZIWA R, KHOTSENG L. Solar energy materials-evolution and niche applications: a literature review[J]. Materials, 2022, 15(15): 5338.

    [2] BAGHER A M, VAHID M M A, MOHSEN M. Types of solar cells and application[J]. American journal of optics and photonics, 2015, 3(5): 94-113.

    [3] XING M B, WEI Y Y, WANG R X, et al. Study on the performance of ZMO/PbS quantum dot heterojunction solar cells[J]. Solar energy, 2021, 213: 53-58.

    [4] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of applied physics, 1961, 32(3): 510-519.

    [5] JIANG C Y, JING L, HUANG X, et al. Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezo-phototronic effect[J]. ACS nano, 2017, 11(9): 9405-9412.

    [6] LU X Y, SUN Y J, HU W P. The external electric field effect on the charge transport performance of organic semiconductors: a theoretical investigation[J]. Journal of materials chemistry A, 2021, 9(37): 21044-21050.

    [7] JIA Y F, ZHANG Y, WEI X, et al. GaTe/CdS heterostructure with tunable electronic properties via external electric field and biaxial strain[J]. Journal of alloys and compounds, 2020, 832: 154965.

    [8] LI S J, ZHOU M, WANG X H, et al. HfSe2 monolayer stability tuning by strain and charge doping[J]. Physics letters A, 2020, 384(23): 126534.

    [9] WU Q Y, CAO L M, ANG Y S, et al. Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field[J]. Applied physics letters, 2021, 118(11): 113102.

    [10] OLSEN V S, OVERSJOEN V, GOGOVA D, et al. ZnSnN2 in real space and k-space: lattice constants, dislocation density, and optical band gap[J]. Advanced optical materials, 2021, 9(16): 2100015.

    [11] KHAN I S, HEINSELMAN K N, ZAKUTAYEV A. Review of ZnSnN2 semiconductor material[J]. Journal of physics: energy, 2020, 2(3): 032007.

    [12] YILDIRIM H. Effects of built-in electric field on donor binding energy in InGaN/ZnSnN2 quantum well structures[J]. Physics letters A, 2019, 383(12): 1324-1329.

    [13] MINIMALA N S, JOHN P A, YOO C K. Magnetic field induced non-linear optical properties in a strained wurtzite GaN/AlxGa1-xN quantum dot: effect of internal fields[J]. Superlattices and microstructures, 2013, 60: 148-159.

    [14] HA S H, BAN S L. Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure[J]. Journal of physics: condensed matter, 2008, 20(8): 085218.

    [15] EL-AOUAMI A, BIKEROUIN M, EL-YADRI M, et al. Internal polarization electric field effects on the efficiency of InN/InxGa1-xN multiple quantum dot solar cells[J]. Solar energy, 2020, 201: 339-347.

    [16] WERNER J H, KOLODINSKI S, QUEISSER H J. Novel optimization principles and efficiency limits for semiconductor solar cells[J]. Physical review letters, 1994, 72(24): 3851-3854.

    [17] LIN C C, LIU W L, SHIH C Y. Detailed balance model for intermediate band solar cells with photon conservation[J]. Optics express, 2011, 19(18): 16927-16933.

    [18] KARIM M R, ZHAO H P. Design of InGaN-ZnSnN2 quantum wells for high-efficiency amber light emitting diodes[J]. Journal of applied physics, 2018, 124(3): 034303.

    [19] PUNYA A, LAMBRECHT W R L. Band offsets between ZnGeN2, GaN, ZnO, and ZnSnN2 and their potential impact for solar cells[J]. Physical review B, 2013, 88(7): 075302.

    [20] VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of applied physics, 2001, 89(11): 5815-5875.

    [21] AHMAD A, STRAK P, KORONSKI K, et al. Critical evaluation of various spontaneous polarization models and induced electric fields in III-nitride multi-quantum wells[J]. Materials, 2021, 14(17): 4935.

    [22] SHEERIN T P, TANNER D S P, SCHULZ S. Atomistic analysis of piezoelectric potential fluctuations in zinc-blende InGaN/GaN quantum wells: a Stillinger-Weber potential based analysis[J]. Physical review B, 2021, 103(16): 165201.

    [23] WAGNER J M, BECHSTEDT F. Properties of strained wurtzite GaN and AlN: ab initiostudies[J]. Physical review B, 2002, 66(11): 115202.

    [24] SHAN W, HAUENSTEIN R J, FISCHER A J, et al. Strain effects on excitonic transitions in GaN: deformation potentials[J]. Physical review B, 1996, 54(19): 13460.

    [25] SHIMADA K, SOTA T, SUZUKI K. First-principles study on electronic and elastic properties of BN, AlN, and GaN[J]. Journal of applied physics, 1998, 84(9): 4951-4958.

    [in Chinese], [in Chinese], [in Chinese]. Conversion efficiency of strained wurtzite InxGa1-xN/ZnSnN2 core/shell quantum dot solar cells under external electric field[J]. Optoelectronics Letters, 2023, 19(3): 144
    Download Citation