• Nano-Micro Letters
  • Vol. 15, Issue 1, 205 (2023)
Zhen Luo1,2,†, Yufan Xia1,2,†, Shuang Chen1,2, Xingxing Wu2..., Ran Zeng3, Xuan Zhang2, Hongge Pan1,4, Mi Yan1,5, Tingting Shi6,*, Kai Tao3,7, Ben Bin Xu8,** and Yinzhu Jiang1,2,5,***|Show fewer author(s)
Author Affiliations
  • 1School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
  • 2ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, People’s Republic of China
  • 3State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
  • 4Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an 710021, People’s Republic of China
  • 5State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, People’s Republic of China
  • 6Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632 Guangdong, People’s Republic of China
  • 7Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou, 311200, People’s Republic of China
  • 8Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
  • show less
    DOI: 10.1007/s40820-023-01171-w Cite this Article
    Zhen Luo, Yufan Xia, Shuang Chen, Xingxing Wu, Ran Zeng, Xuan Zhang, Hongge Pan, Mi Yan, Tingting Shi, Kai Tao, Ben Bin Xu, Yinzhu Jiang. Synergistic “Anchor-Capture” Enabled by Amino and Carboxyl for Constructing Robust Interface of Zn Anode[J]. Nano-Micro Letters, 2023, 15(1): 205 Copy Citation Text show less
    References

    [1] L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020).

    [2] L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5(10), 743–749 (2020).

    [3] H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021).

    [4] N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020).

    [5] X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020).

    [6] H. Wang, R. Tan, Z. Yang, Y. Feng, X. Duan et al., Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy Mater. 11(2), 2000962 (2021).

    [7] J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022).

    [8] Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10(30), 2001599 (2020).

    [9] D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58(23), 7823–7828 (2019).

    [10] C. Han, W. Li, H.K. Liu, S. Dou, J. Wang, Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 74, 104880 (2020).

    [11] T.C. Li, D. Fang, J. Zhang, M.E. Pam, Z.Y. Leong et al., Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. J. Mater. Chem. A 9(10), 6013–6028 (2021).

    [12] Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020).

    [13] Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31(43), 1903778 (2019).

    [14] H. Jia, Z. Wang, M. Dirican, S. Qiu, C.Y. Chan et al., A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. J. Mater. Chem. A 9(9), 5597–5605 (2021).

    [15] M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018).

    [16] B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2022).

    [17] J. Fu, Z.P. Cano, M.G. Park, A. Yu, M. Fowler et al., Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017).

    [18] A.R. Mainar, E. Iruin, L.C. Colmenares, A. Kvasha, I. de Meatza et al., An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. J. Energy Storage 15, 304–328 (2018).

    [19] A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023).

    [20] X. Lu, C. Zhao, A. Chen, Z. Guo, N. Liu et al., Reducing Zn-ion concentration gradient by SO42–-immobilized interface coating for dendrite-free Zn anode. Chem. Eng. J. 451, 138772 (2023).

    [21] P. Xiao, H. Li, J. Fu, C. Zeng, Y. Zhao et al., An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy Environ. Sci. 15(4), 1638–1646 (2022).

    [22] X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020).

    [23] J. Gu, Y. Tao, H. Chen, Z. Cao, Y. Zhang et al., Stress-release functional liquid metal-MXene layers toward dendrite-free zinc metal anodes. Adv. Energy Mater. 12(16), 2200115 (2022).

    [24] Y. Zeng, P.X. Sun, Z. Pei, Q. Jin, X. Zhang et al., Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34(18), 2200342 (2022).

    [25] L. Cao, D. Li, F.A. Soto, V. Ponce, B. Zhang et al., Highly reversible aqueous zinc batteries enabled by zincophilic–zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew. Chem. Int. Ed. 60(34), 18845–18851 (2021).

    [26] M. Luo, C. Wang, H. Lu, Y. Lu, B.B. Xu et al., Dendrite-free zinc anode enabled by zinc-chelating chemistry. Energy Storage Mater. 41, 515–521 (2021).

    [27] B. Wang, R. Zheng, W. Yang, X. Han, C. Hou et al., Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Adv. Funct. Mater. 32(23), 2112693 (2022).

    [28] Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60(43), 23357–23364 (2021).

    [29] J. Lu, J. Yang, Z. Zhang, C. Wang, J. Xu et al., Silk fibroin coating enables dendrite-free zinc anode for long-life aqueous zinc-ion batteries. Chemsuschem 15(15), e202200656 (2022).

    [30] J. Xu, W. Lv, W. Yang, Y. Jin, Q. Jin et al., In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries. ACS Nano 16(7), 11392–11404 (2022).

    [31] S. Liang, J. Miao, H. Shi, M. Zeng, H. An et al., Tuning interface mechanics via β-configuration dominant amyloid aggregates for lithium metal batteries. ACS Nano 16(11), 19584–19593 (2022).

    [32] H. Lu, X. Zhang, M. Luo, K. Cao, Y. Lu et al., Amino acid-induced interface charge engineering enables highly reversible Zn anode. Adv. Funct. Mater. 31(45), 2103514 (2021).

    [33] Q. Meng, R. Zhao, P. Cao, Q. Bai, J. Tang et al., Stabilization of Zn anode via a multifunctional cysteine additive. Chem. Eng. J. 447, 137471 (2022).

    [34] X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33(52), 2105951 (2021).

    [35] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996).

    [36] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6(1), 15–50 (1996).

    [37] P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994).

    [38] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996).

    [39] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010).

    [40] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44(6), 1272–1276 (2011).

    [41] V. Wang, N. Xu, J.C. Liu, G. Tang, W.T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    [42] M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith et al., GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    [43] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials. J. Phys. Chem. 91(24), 6269–6271 (1987).

    [44] Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong et al., A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24(16), 1999–2012 (2003).

    [45] J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004).

    [46] A. Menke, M. Rex-Haffner, T. Klengel, E.B. Binder, D. Mehta, Peripheral blood gene expression: it all boils down to the RNA collection tubes. BMC Res. Notes 5(1), 1 (2012).

    [47] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012).

    [48] L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157–2164 (2009).

    [49] H.A. Posch, W.G. Hoover, F.J. Vesely, Canonical dynamics of the Nosé oscillator: Stability, order, and chaos. Phys. Rev. A 33(6), 4253–4265 (1986).

    [50] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182–7190 (1981).

    [51] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee et al., A smooth particle mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995).

    [52] D.M. York, T.A. Darden, L.G. Pedersen, The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J. Chem. Phys. 99(10), 8345–8348 (1993).

    [53] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996).

    [54] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al., Gaussian 16 Rev. C.01 (Wallingford, CT, 2016)

    [55] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994).

    [56] F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297–3305 (2005).

    [57] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113(18), 6378–6396 (2009).

    [58] M. Gutowski, J.H. Van Lenthe, J. Verbeek, F.B. Van Duijneveldt, G. Chałasinski, The basis set superposition error in correlated electronic structure calculations. Chem. Phys. Lett. 124(4), 370–375 (1986).

    [59] X. Li, L. Yuan, D. Liu, M. Liao, J. Chen et al., Elevated lithium ion regulation by a “natural silk” modified separator for high-performance lithium metal anode. Adv. Funct. Mater. 31(18), 2100537 (2021).

    [60] C. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian et al., Highly reversible zinc metal anodes enabled by protonated melamine. J. Mater. Chem. A 10(12), 6636–6640 (2022).

    [61] C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33(38), 2100445 (2021).

    [62] Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15(11), 4748–4760 (2022).

    [63] R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021).

    [64] W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019).

    [65] C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020).

    [66] H. Zhang, R. Guo, S. Li, C. Liu, H. Li et al., Graphene quantum dots enable dendrite-free zinc ion battery. Nano Energy 92, 106752 (2022).

    [67] Q. He, G. Fang, Z. Chang, Y. Zhang, S. Zhou et al., Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction. Nano-Micro Lett. 14(1), 93 (2022).

    [68] D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li et al., Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 12(9), 2102707 (2022).

    [69] W. Chen, S. Guo, L. Qin, L. Li, X. Cao et al., Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces. Adv. Funct. Mater. 32(20), 2112609 (2022).

    [70] H. Yang, Y. Qiao, Z. Chang, H. Deng, X. Zhu et al., Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery. Adv. Mater. 33(38), 2102415 (2021).

    [71] J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020).

    [72] H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016).

    [73] W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017).

    Zhen Luo, Yufan Xia, Shuang Chen, Xingxing Wu, Ran Zeng, Xuan Zhang, Hongge Pan, Mi Yan, Tingting Shi, Kai Tao, Ben Bin Xu, Yinzhu Jiang. Synergistic “Anchor-Capture” Enabled by Amino and Carboxyl for Constructing Robust Interface of Zn Anode[J]. Nano-Micro Letters, 2023, 15(1): 205
    Download Citation