[1] J GAO, Y GUO, Z LIN et al. Infrared small target detection using multiscale gray and variance difference, 53-64(2018).
[2] Xiang YI, Bingjian WANG. Fast infrared and dim target detection algorithm based on multi-feature. Acta Photonica Sinica, 46, 0610002(2017).
[3] Guoqiang ZHU, Xiangyong MENG, Weixian QIAN. Infrared small target detection method based on curvature near the ground. Acta Photonica Sinica, 47, 1010001(2018).
[4] C GAO, D MENG, Y YANG et al. Infrared patch-image model for small target detection in a single image. IEEE Transactions on Image Processing, 22, 4996-5009(2013).
[5] A KRIZHEVSKY, I SUTSKEVER, G E HINTON. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105(2012).
[6] R GIRSHICK, J DONAHUE, T DARRELL et al. Rich feature hierarchies for accurate object detection and semantic segmentation, 580-587(2014).
[7] R GIRSHICK. Fast r-cnn, 1440-1448(2015).
[8] S REN, K HE, R GIRSHICK et al. Faster r-cnn: Towards real-time object detection with region proposal networks[DB/OL]. https://arxiv.org/abs/1506.01497
[9] W LIU, D ANGUELOV, D ERHAN et al. Ssd: Single shot multibox detector, 21-37(2016).
[10] J REDMON, A FARHADI. Yolov3: An incremental improvement[DB/OL]. https://arxiv.org/abs/1804.02767
[11] A BOCHKOVSKIY, C Y WANG, H Y M LIAO. Yolov4: Optimal speed and accuracy of object detection[DB/OL]. https://arxiv.org/abs/2004.10934
[12] J BAEK, S HONG, J KIM et al. Efficient pedestrian detection at nighttime using a thermal camera. Sensors, 17, 1850(2017).
[13] E J LEE, B C KO, J Y NAM. Recognizing pedestrian’s unsafe behaviors in far-infrared imagery at night. Infrared Physics & Technology, 76, 261-270(2016).
[14] I RODGER, B CONNOR, N M ROBERTSON. Classifying objects in LWIR imagery via CNNs, 9987, 99870H(2016).
[15] A BERG. Detection and tracking in thermal infrared imagery(2016).
[16] A BERG, K ÖFJÄLL, J AHLBERG et al. Detecting rails and obstacles using a train-mounted thermal camera, 492-503(2015).
[17] A LEYKIN, Y RAN, R HAMMOUD. Thermal-visible video fusion for moving target tracking and pedestrian classification, 1-8(2007).
[18] J WAGNER, V FISCHER, M HERMAN et al. Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks, 587, 509-514(2016).
[19] H CHOI, S KIM, K PARK et al. Multi-spectral pedestrian detection based on accumulated object proposal with fully convolutional networks, 621-626(2016).
[20] D GHOSE, S M DESAI, S BHATTACHARYA et al. Pedestrian detection in thermal images using saliency maps, 20-30(2019).
[21] C DEVAGUPTAPU, N AKOLEKAR, MM SHARMA et al. Borrow from anywhere: Pseudo multi-modal object detection in thermal imagery, 15-23(2019).
[22] T Y LIN, P DOLLÁR, R GIRSHICK et al. Feature pyramid networks for object detection, 2117-2125(2017).
[23] T PARK, A A EFROS, R ZHANG et al. Contrastive learning for unpaired image-to-image translation, 319-345(2020).
[24] J Y ZHU, T PARK, P ISOLA et al. Unpaired image-to-image translation using cycle-consistent adversarial networks, 2223-2232(2017).
[25] K HE, X ZHANG, S REN et al. Deep residual learning for image recognition, 770-778(2016).
[26] A GROUPF. FLIR thermal dataset for algorithm training. https://www.flir.in/oem/adas/adas-dataset-agree
[27] C LI, W XIA, Y YAN et al. Segmenting objects in day and night: Edge-conditioned cnn for thermal image semantic segmentation. IEEE Transactions on Neural Networks and Learning Systems, 47, 1110001(2020).