• NUCLEAR TECHNIQUES
  • Vol. 45, Issue 12, 120201 (2022)
Guang YANG1, Yijun ZHONG1、*, Xueyu GONG1、*, Qianhong HUANG1, Pingwei ZHENG2, and Zhanhui WANG3
Author Affiliations
  • 1Department of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 2Department of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
  • 3Institute of Fusion Sciences, Southwestern Institute of Physics, Chengdu 610000, China
  • show less
    DOI: 10.11889/j.0253-3219.2022.hjs.45.120201 Cite this Article
    Guang YANG, Yijun ZHONG, Xueyu GONG, Qianhong HUANG, Pingwei ZHENG, Zhanhui WANG. Effect of impurity effect on the electron cyclotron current drive[J]. NUCLEAR TECHNIQUES, 2022, 45(12): 120201 Copy Citation Text show less
    The integrated simulation workflow with OMFIT
    Fig. 1. The integrated simulation workflow with OMFIT
    Electron cyclotron current drive with differentZeff without considering the effect ofZeff changes on plasma performance
    Fig. 2. Electron cyclotron current drive with different Zeff without considering the effect of Zeff changes on plasma performance
    Plasma dynamic profiles and magnetic equilibrium configuration in differentZeff cases (a) Electron density distribution, (b) Electron temperature distribution, (c) Ion temperature distribution, (d) Plasma magnetic equilibrium configuration
    Fig. 3. Plasma dynamic profiles and magnetic equilibrium configuration in different Zeff cases (a) Electron density distribution, (b) Electron temperature distribution, (c) Ion temperature distribution, (d) Plasma magnetic equilibrium configuration
    The relationship between the transport flux of each channel andZeff(a) Electron energy flux at radial position 0.6, (b) Electron energy flux at radial position 0.7, (c) Ion energy flux at radial position 0.6, (d) Ion energy flux at radial position 0.7
    Fig. 4. The relationship between the transport flux of each channel and Zeff(a) Electron energy flux at radial position 0.6, (b) Electron energy flux at radial position 0.7, (c) Ion energy flux at radial position 0.6, (d) Ion energy flux at radial position 0.7
    Radiation loss power under differentZeff
    Fig. 5. Radiation loss power under different Zeff
    Electron cyclotron current drive with differentZeff considering the effect ofZeff changes on plasma performance
    Fig. 6. Electron cyclotron current drive with different Zeff considering the effect of Zeff changes on plasma performance
    有效电荷数 Effective charge numberZeff归一化比压 Normal ized toroidal betaβN安全因子 Safety factorq95/q0自举/欧姆电流份额The fractions of bootstrap current and ohmic currentfbs/fohm / %电子回旋波驱动电流Electron cyclotron drive currentIec1/Iec2/ kA芯部电子/离子温度The core electron temperature and core ion temperatureTe0/Ti0 / keV芯部电子密度The core electron densityne0/ 1019 m-3储能 Thermal stored energyWth/ MJ辐射损失功率Radiation power lossPrad/ MWShafranov位移Shafranovdisplace-ment
    2.02.495.36/1.0040.75/38.0897.43/3.066.40/6.734.790.920.5750.087
    2.32.625.53/1.2644.00/34.0097.95/3.167.02/7.914.740.980.7160.095
    2.53.045.66/1.0553.25/23.42127.42/3.627.36/10.074.581.160.8350.113
    2.62.9785.84/1.2551.17/24.83118.29/3.497.03/9.314.891.130.8460.109
    2.82.855.51/1.4948.25/30.33113.82/3.127.01/9.184.621.070.9390.103
    Table 1. Plasma parameters for different Zeff cases
    Guang YANG, Yijun ZHONG, Xueyu GONG, Qianhong HUANG, Pingwei ZHENG, Zhanhui WANG. Effect of impurity effect on the electron cyclotron current drive[J]. NUCLEAR TECHNIQUES, 2022, 45(12): 120201
    Download Citation