• Chinese Journal of Lasers
  • Vol. 43, Issue 4, 403004 (2016)
He Bowen1、2、3、*, Ran Xianzhe1、2、3, Tian Xiangjun1、2、3, and Wang Huaming1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/cjl201643.0403004 Cite this Article Set citation alerts
    He Bowen, Ran Xianzhe, Tian Xiangjun, Wang Huaming. Corrosion Resistance Research of Laser Additive Manufactured TC11 Titanium Alloy[J]. Chinese Journal of Lasers, 2016, 43(4): 403004 Copy Citation Text show less
    References

    [1] Chinese Mechanical Engineering Society. China materials engineering canon[M]. Beijing: Chemical Industry Press, 2006.

    [2] Baolisuowa E A. Titanium metallography[M]. Beijing: National Defense Industry Press, 1986.

    [3] Wang Huaming. Research progress on laser surface modifications of metallic materials and laser rapid forming of high performance metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5): 473-478.

    [4] Wang Huaming, Zhang Shuquan, Wang Xiangming. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese J Lasers, 2009, 36(12): 3204-3209.

    [5] Chen Yongcheng, Zhang Shuquan, Tian Xiangjun, et al.. Microstructure and microhardness of 4045 aluminum alloy fabricated by laser melting deposition[J]. Chinese J Lasers, 2015, 42(3): 0303008.

    [6] Liu Yantao, Gong Xinyong, Liu Mingkun, et al.. Microstructure and tensile properties of laser melting deposited Ti2AlNb-based alloy [J]. Chinese J Lasers, 2014, 41(1): 0103005.

    [7] Y Zhu, J Li, X Tian, et al.. Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing[J]. Materials Science & Engineering A, 2014, 607: 427-434.

    [8] Y Zhu, D Liu, X Tian, et al.. Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo- 1.5Zr-0.3Si titanium alloy[J]. Materials & Design, 2014, 56: 445-453.

    [9] Y Y Zhu, X J Tian, J Li, et al.. The anisotropy of laser melting deposition additive manufacturing Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Materials & Design, 2015, 67: 538-542.

    [10] Y Y Zhu, X J Tian, J Li, et al.. Microstructure evolution and layer bands of laser melting deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Journal of Alloys and Compounds, 2014, 616(2): 468-474.

    [11] Ding Hongyan, Dai Zhendong. Corrosion wear characteristic of TC11 alloy in artificial sea water[J]. Tribology, 2008, 28(2): 139-144.

    [12] Deng Kai. Research on fretting wear of TC11 and surface modified layers in seawater and high temperature conditions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.

    [13] J R Chen, W T Tsai. In situ corrosion monitoring of Ti-6Al-4V alloy in H2SO4/HCl mixed solution using electrochemical AFM[J]. Electrochimica Acta, 2011, 56(4): 1746-1751.

    [14] I C Alagic, Z Cvijovic, S Mitrovic, et al.. Wear and corrosion behaviour of Ti-13Nb-13Zr and Ti-6Al-4V alloys in simulated physiological solution[J]. Corrosion Science, 2011, 53(2): 796-808.

    [15] H Garbacz, M Pisarek, K J Kurzyd owski. Corrosion resistance of nanostructured titanium[J]. Biomolecular Engineering, 2007, 24(5): 559-563.

    [16] M Hoseini, A Shahryari, S Omanovic, et al.. Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing[J]. Corrosion Science, 2009, 51(12): 3064-3067.

    [17] Cao Chunan. Principles of electrochemistry of corrosion[M]. Beijing: Chemical Industry Press, 2006.

    [18] N T C Oliveira, A C Guastaldi. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications[J]. Acta Biomaterialia, 2009, 5(1): 399-405.

    He Bowen, Ran Xianzhe, Tian Xiangjun, Wang Huaming. Corrosion Resistance Research of Laser Additive Manufactured TC11 Titanium Alloy[J]. Chinese Journal of Lasers, 2016, 43(4): 403004
    Download Citation