• Frontiers of Optoelectronics
  • Vol. 18, Issue 1, 2 (2025)
Rytik A. P. and Tuchin V. V.
DOI: 10.1007/s12200-024-00146-y Cite this Article
Rytik A. P., Tuchin V. V.. Effect of terahertz radiation on cells and cellular structures[J]. Frontiers of Optoelectronics, 2025, 18(1): 2 Copy Citation Text show less
References

[1] Cherkasova, O.P., Serdyukov, D.S., Atushnyak, A.S., Nemova, E.F., Kozlov, E.N., Shidlovsky, Yu.V., Zaytsev, K.I., Tuchin, V.V.: Mechanisms of the effect of terahertz radiation on cells. Opt. Spect. 128(6), 852–864 (2020)

[2] Romanenko, S., Begley, R., Harvey, A., Hool, L., Wallace, V.: The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential. J. R. Soc. Interface. 14(137), 20170585(2017)

[3] Rashin, B., Maryam, P., Nariman, N., Abbas, B.: The impact of antimicrobial photodynamic therapy on pain and oral health-related quality of life: a literature review. J. Dent. Sci. 19, 1924(2024)

[4] Sun, L., Li, Y., Yu, Y., Wang, P., Zhu, S., Wu, K., Liu, Y., Wang, R., Min, L., Chang, C.: Inhibition of cancer cell migration and glycolysis by terahertz wave modulation via altered chromatin accessibility. Research 1(16), 9860679 (2022)

[5] Database of biomedical publications. Available at the website of: pubmed.ncbi.nlm.nih.gov/?term=THz;timeline=expanded

[6] Vieira, W.F., Coelho, D.R.A., Gersten, M., Puerto, A.M.H., Kalli, S., Gonzalez-Garibay, G., McEachern, K., Clancy, J.A., Skotko, B.G., Abbeduto, L., Thurman, A.J., Pulsifer, M.B., Corcoran, E., Saltmarche, A.E., Naeser, M.A., Cassano, P.: TransPhoM-DS study grant report: rationale and protocol for investigating the efficacy of low-power transcranial photobiomodulation on language, executive function, attention, and memory in down syndrome. Photonics 11(7), 670 (2024)

[7] Gao, F., Lu, X., Zhang, Q., Shang, S.: Effect of 0.1 THz irradiation on the lifespan and physiological indicators of caenorhabditis elegans. IEEE Trans. Plasma Sci., 1–6(2024)

[8] Penkov, N.V.: Terahertz spectroscopy as a method for investigation of hydration shells of biomolecules. Biophys. Rev.15(5), 833–849 (2023)

[9] Chen, X., Lindley-Hatcher, H., Stantchev, R.I., Wang, J., Li, K., Serrano, A.H., Taylor, Z.D., Castro-Camus, E., Pickwell-MacPherson, E.: Terahertz (THz) biophotonics technology: instrumentation, techniques, and biomedical applications. Chem. Phys. Rev. 3(1), 011311 (2022)

[10] Weisenstein, C., Wigger, A.K., Richter, M., Sczech, R., Bosserhoff, A.K., Bolvar, P.H.: THz detection of biomolecules in aqueous environments—status and perspectives for analysis under physiological conditions and clinical use. Int. J. Infrared Millim. Terahertz Waves 42(6), 607–646 (2021)

[11] Reimers, J.R., McKemmish, L.K., McKenzie, R.H., Mark, A.E., Hush, N.S.: Weak, strong, and coherent regimes of Frhlich condensation and their applications to terahertz medicine and quantum consciousness. Proc. Natl. Acad. Sci. U.S.A.106(11), 4219–4224 (2009)

[12] Sitnikov, D.S., Ilina, I.V., Pronkin, A.A.: Experimental system for studying bioeffects of intense terahertz pulses with electric field strength up to 3.5 MV/cm. Opt. Eng. 59(6), 061613(2020)

[13] Demidova, E.V., Goryachkovskaya, T.N., Malup, T.K., Bannikova, S.V., Semenov, A.I., Vinokurov, N.A., Kolchanov, N.A., Popik, V.M., Peltek, S.E.: Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells. Bioelectromagnetics 34(1), 15–21 (2013)

[14] Demidova, E.V., Goryachkovskaya, T.N., Mescheryakova, I.A., Malup, T.K., Semenov, A.I., Vinokurov, N.A., Kolchanov, N.A., Popik, V.M., Peltek, S.E.: Impact of terahertz radiation on stresssensitive genes of E. coli cell. IEEE Trans. Terahertz Sci. Technol. 6(3), 1–7 (2016)

[15] Serdyukov, D.S., Goryachkovskaya, T.N., Mescheryakova, I.A., Bannikova, S.V., Kuznetsov, S.A., Cherkasova, O.P., Popik, V.M., Peltek, S.E.: Study on the effects of terahertz radiation on gene networks of Escherichia coli by means of fluorescent biosensors. Biomed. Opt. Express 11(9), 5258 (2020)

[16] Serdyukov, D.S., Goryachkovskaya, T.N., Mescheryakova, I.A., Kuznetsov, S.A., Popik, V.M., Peltek, S.E.: Fluorescent bacterial biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz radiation. Biomed. Opt. Express 12(2), 705–721 (2021)

[17] Weightman, P.: Prospects for the study of biological systems with high power sources of terahertz radiation. Phys. Biol. 9(5),053001 (2012)

[18] Schroer, M.A., Schewa, S., Gruzinov, A.Y., Rnnau, C., Lahey-Rudolph, J.M., Blanchet, C.E., Zickmantel, T., Song, Y.H., Svergun, D.I., Roessle, M.: Probing the existence of non-thermal Terahertz radiation induced changes of the protein solution structure. Sci. Rep. 11(1), 22311 (2021)

[19] Gezimati, M., Singh, G.: Terahertz imaging technology for localization of cancer tumours: a technical review. Multimedia Tools Appl. 83(11), 33675–33711 (2023)

[20] Kucheryavenko, A.S., Chernomyrdin, N.V., Gavdush, A.A., Alekseeva, A.I., Nikitin, P.V., Dolganova, I.N., Karalkin, P.A., Khalansky, A.S., Spektor, I.E., Skorobogatiy, M., Tuchin, V.V., Zaytsev, K.I.: Terahertz dielectric spectroscopy and solid immersion microscopy of ex vivo glioma model 101.8: brain tissue heterogeneity. Biomed. Opt. Express 12(8), 5272–5289 (2021)

[21] Globus, T., Moskaluk, C., Pramoonjago, P., Gelmont, B., Moyer, A., Bykhovski, A., Ferrance, J.: Sub-terahertz vibrational spectroscopy of ovarian cancer and normal control tissue for molecular diagnostic technology. Cancer Biomark. 24(4), 405–419(2019)

[22] Chernomyrdin, N.V., Il’enkova, D.R., Zhelnov, V.A., Alekseeva, A.I., Gavdush, A.A., Musina, G.R., Nikitin, P.V., Kucheryavenko, A.S., Dolganova, I.N., Spektor, I.E., Tuchin, V.V., Zaytsev, K.I.: Quantitative polarization-sensitive super-resolution solid immersion microscopy reveals biological tissues’ birefringence in the terahertz range. Sci. Rep. 13(1), 16596 (2023)

[23] Kucheryavenko, A.S., Dolganova, I.N., Zhokhov, A.A., Masalov, V.M., Musina, G.R., Tuchin, V.V., Chernomyrdin, N.V., Gavdush, A.A., Il’enkova, D.R., Garnov, S.V., Zaytsev, K.I.: Terahertz-wave scattering in tissues: examining the limits of the applicability of effective-medium theory. Phys. Rev. Appl. 20(5),054050 (2023)

[24] Zhelnov, V.A., Chernomyrdin, N.V., Katyba, G.M., Gavdush, A.A., Bukin, V.V., Garnov, S.V., Spektor, I.E., Kurlov, V.N., Skorobogatiy, M., Zaytsev, K.I.: Hemispherical rutile solid immersion lens for terahertz microscopy with superior 0.06–0.11 resolution. Adv. Opt. Mater. 12(1), 2300927 (2024)

[25] Kucheryavenko, A.S., Zhelnov, V.A., Melikyants, D.G., Chernomyrdin, N.V., Lebedev, S.P., Bukin, V.V., Garnov, S.V., Kurlov, V.N., Zaytsev, K.I., Katyba, G.M.: Super-resolution THz endoscope based on a hollow-core sapphire waveguide and a solid immersion lens. Opt. Express 31(8), 13366–13373 (2023)

[26] Martins, I.S., Silva, H.F., Lazareva, E.N., Chernomyrdin, N.V., Zaytsev, K.I., Oliveira, L.M., Tuchin, V.V.: Measurement of tissue optical properties in a wide spectral range: a review. Biomed. Opt. Express 14, 249–298 (2023)

[27] Yamazaki, S., Harata, M., Idehara, T., Konagaya, K., Yokoyama, G., Hoshina, H., Ogawa, Y.: Actin polymerization is activated by terahertz irradiation. Sci. Rep. 8(1), 9990 (2018)

[28] Yamazaki, S., Harata, M., Ueno, Y., Tsubouchi, M., Konagaya, K., Ogawa, Y., Isoyama, G., Otani, C., Hoshina, H.: Propagation of THz irradiation energy through aqueous layers: demolition of actin filaments in living cells. Sci. Rep. 10(1), 9008 (2020)

[29] Tuchin, V.V., Zhu, D., Genina, E.A. (eds.): Handbook of tissue optical clearing: new prospects in optical imaging. Taylor Francis Group LLC, CRC Press, Boca Raton (2022)

[30] Shchepetilnikov, A.V., Zarezin, A.M., Muravev, V.M., Gusikhin, P.A., Kukushkin, I.V.: Quantitative analysis of water content and distribution in plants using terahertz imaging. Opt. Eng. 59(6),061617 (2020)

[31] Smolyanskaya, O.A., Chernomyrdin, N.V., Konovko, A.A., Zaytsev, K.I., Ozheredov, I.A., Cherkasova, O.P., Nazarov, M.M., Guillet, J.P., Kozlov, S.A., Kistenev, Yu.V., Coutaz, J.L., Mounaix, P., Vaks, V.L., Son, J.H., Cheon, H., Wallace, V.P., Feldman, Yu., Popov, I., Yaroslavsky, A.N., Shkurinov, A.P., Tuchin, V.V.: Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Progr. Quant. Electron. 62, 1–77 (2018)

[32] Ramundo, O.A., Gallerano, G.P.: Terahertz radiation effects and biological applications. J. Infrared Millim. Terahertz Waves 30,1308–1318 (2009)

[33] Shiraga, K., Suzuki, T., Kondo, N., Tanaka, K., Ogawa, Y.: Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy. Appl. Phys. Lett. 106(25), 253701 (2015)

[34] Sun, L., Zhao, L., Peng, R.Y.: Research progress in the effects of terahertz waves on biomacromolecules. Mil. Med. Res. 8(1), 28(2021)

[35] Comez, L., Paolantoni, M., Sassi, P., Corezzi, S., Morresi, A., Fioretto, D.: Molecular properties of aqueous solutions: a focus on the collective dynamics of hydration water. Soft Matter 12(25), 5501–5514 (2016)

[36] Yamaguchi, S., Fukushi, Y., Kubota, O., Itsuji, T., Ouchi, T., Yamamoto, S.: Brain tumor imaging of rat fresh tissue using terahertz spectroscopy. Sci. Rep. 6(1), 1–6 (2016)

[37] Laage, D., Elsaesser, T., Hynes, J.T.: Water dynamics in the hydration shells of biomolecules. Chem. Rev. 117(16), 10694–10725 (2017)

[38] Zhu, Z., Chang, C., Shu, Y., Song, B.: Transition to a superpermeation phase of confined water induced by a terahertz electromagnetic wave. J. Phys. Chem. Lett. 11(1), 256–262(2020)

[39] Hu, E., Zhang, Q., Shang, S., Jiang, Y., Lu, X.: Continuous wave irradiation at 01 terahertz facilitates transmembrane transport of small molecules. iScience 25(3), 103966 (2022)

[40] Lin, Y., Wu, X., Wang, K., Shang, S., Gong, Y., Zhao, H., Wu, D., Zhang, P., Lu, X.: Spectral characteristics and functional responses of phospholipid bilayers in the terahertz band. Int. J. Mol. Sci. 24(8), 7111 (2023)

[41] Bannikova, S., Khlebodarova, T., Vasilieva, A., Mescheryakova, I., Bryanskaya, A., Shedko, E., Popik, V., Goryachkovskaya, T., Peltek, S.: Specific features of the proteomic response of thermophilic bacterium geobacillus icigianus to terahertz irradiation. Int. J. Mol. Sci. 23(23), 15216 (2022)

[42] Sugiyama, J., Tokunaga, Y., Hishida, M., Tanaka, M., Takeuchi, K., Satoh, D., Imashimizu, M.: Nonthermal acceleration of protein hydration by sub-terahertz irradiation. Nat. Com. 14(1),2825 (2023)

[43] Masahiko, H., Yuya, U., Shota, Y.: Nonthermal effect of terahertz wave radiation on DNA damage repair in living cells. Preprint (Version 1). Available at Research Square (2023)

[44] Cheon, H., Paik, J.H., Choi, M., Yang, H.J., Son, J.H.: Detection and manipulation of methylation in blood cancer DNA using terahertz radiation. Sci. Rep. 9(1), 6413 (2019)

[45] Cheon, H., Hur, J.K., Hwang, W., Yang, H.J., Son, J.H.: Epigenetic modification of gene expression in cancer cells by terahertz demethylation. Sci. Rep. 13(1), 4930 (2023)

[46] Tachizaki, T., Sakaguchi, R., Terada, S., Kamei, K.I., Hirori, H.: Terahertz pulse-altered gene networks in human induced pluripotent stem cells. Opt. Lett. 45(21), 6078–6081 (2020)

[47] Wang, L., Cheng, Y., Wang, W., Zhao, J., Wang, Y., Zhang, X., Wang, M., Shan, T., He, M.: Effects of terahertz radiation on the aggregation of Alzheimer’s A42 peptide. Int. J. Mol. Sci. 24(5),5039 (2023)

[48] Lee, D., Cheon, H., Jeong, S.Y., Son, J.H.: Transformation of terahertz vibrational modes of cytosine under hydration. Sci. Rep. 10(1), 10271 (2020)

[49] Tan, S., Tan, P., Luo, L., Chi, Y., Yang, Z., Zhao, X., Zhao, L., Dong, J., Zhang, J., Yao, B.: Exposure effects of terahertz waves on primary neurons and neuron-like cells under nonthermal conditions. Biomed. Environ. Sci. 32, 739–754 (2019)

[50] Ma, S., Ding, P., Zhou, Z., Jin, H., Li, X., Li, Y.: Terahertz radiation modulates neuronal morphology and dynamics properties. Brain Sci. 14(3), 279 (2024)

[51] Liu, M., Liu, J., Liang, W., Lu, B., Fan, P., Song, Y., Wang, M., Wu, Y., Cai, X.: Recent advances and research progress on microsystems and bioeffects of terahertz Neuromodulation. Microsyst. Nanoeng. 9(1), 143 (2023)

[52] Zhao, X., Zhang, M., Liu, Y., Liu, H., Ren, K., Xue, Q., Zhang, H., Zhi, N., Wang, W., Wu, S.: Terahertz exposure enhances neuronal synaptic transmission and oligodendrocyte differentiation in vitro. iScience 24(12), 103485 (2021)

[53] Samsonov, A., Popov, S.: The effect of a 94 GHz electromagnetic field on neuronal microtubules. Bioelectromagnetics 34(2),133–144 (2013)

[54] Sulatsky, M., Duka, M., Smolyanskaya, O.: Stimulation of neurite growth under broadband pulsed THz radiation. Phys. Wave Phenom. 22(3), 197–201 (2014)

[55] Duka, M., Dvoretskaya, L., Babelkin, N., Khodzitskii, M., Chivilikhin, S., Smolyanskaya, O.: Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells. Quantum Electron. 44(8),707–712 (2014)

[56] Deghoyan, A., Heqimyan, A., Nikoghosyan, A., Dadasyan, E., Ayrapetyan, S.: Cell bathing medium as a target for non thermal effect of millimeter waves. Electromagn. Biol. Med. 31(2),132–142 (2012)

[57] Ol’shevskaia, I.S., Kozlov, A., Petrov, A., Zapara, T., Ratushniak, A.: Influence of terahertz (submillimeter) laser radiation on neurons in vitro. Zhurnal Vyss. Nervn. Deyatelnosti Im. I P Pavlov 59, 353–359 (2009)

[58] Tsurkan, M., Smolyanskaya, O., Bespalov, V., Penniyainen, V., Kipenko, A., Lopatina, E., Krylov, B.: Changing growth of neurites of sensory ganglion by terahertz radiation. Proc. SPIE 8261,82610 (2012)

[59] Ma, S., Li, Z., Gong, S., Lu, C., Li, X., Li, Y.: High frequency electromagnetic radiation stimulates neuronal growth and hippocampal synaptic transmission. Brain Sci. 13(4), 686 (2023)

[60] Shaoqing, M., Zhiwei, L., Shixiang, G., Chengbiao, L., Xiaoli, L., Yingwei, L.: The laws and effects of terahertz wave interactions with neurons. Front. Bioeng. Biotechnol. 11, 684 (2023)

[61] Kovalevska, L., Golenkov, O., Kulahina, Y., Callender, T., Sizov, F., Kashuba, E.: A comparative study on the viability of normal and cancerous cells upon irradiation with a steady beam of THz rays. Life (Basel) 12(3), 376 (2022)

[62] Sitnikov, D.S., Revkova, V.A., Ilina, I.V., Gurova, S.A., Komarov, P.S., Struleva, E.V., Konoplyannikov, M.A., Kalsin, V.A., Baklaushev, V.P.: Studying the genotoxic effects of high intensity terahertz radiation on fibroblasts and CNS tumor cells. J. Biophotonics 16(1), e202200212 (2023)

[63] Titushkin, I., Rao, V., Pickard, W., Moros, E., Shafirstein, G., Cho, M.: Altered calcium dynamics mediates P19-derived neuron-like cell responses to millimeter-wave radiation. Radiat. Res.172(6), 725–736 (2009)

[64] Yamazaki, S., Ueno, Y., Hosoki, R., Saito, T., Idehara, T., Yamaguchi, Y., Otani, C., Ogawa, Y., Harata, M., Hoshina, H.: THz irradiation inhibits cell division by affecting actin dynamics.PLoS ONE 16(8), e0248381 (2021)

[65] Borovkova, M., Serebriakova, M., Fedorov, V., Sedykh, E., Vaks, V., Lichutin, A., Salnikova, A., Khodzitsky, M.: Investigation of terahertz radiation influence on rat glial cells. Biomed. Opt. Express 8(1), 273–280 (2017)

[66] Perera, P.G.T., Appadoo, D.R.T., Cheeseman, S., Wandiyanto, J.V., Linklater, D., Dekiwadia, C., Truong, V.K., Tobin, M.J., Vongsvivut, J., Bazaka, O., Bazaka, K., Croft, R.J., Crawford, R.J., Ivanova, E.P.: PC 12 pheochromocytoma cell response to super high frequency terahertz radiation from synchrotron source. Cancers (Basel) 11(2), 162 (2019)

[67] Sitnikov, D., Revkova, V., Ilina, I., Shatalova, R., Komarov, P., Struleva, E., Konoplyannikov, M., Kalsin, V., Baklaushev, V.: Sensitivity of neuroblastoma and induced neural progenitor cells to high-intensity THz radiation. Int. J. Mol. Sci. 24(7), 6558(2023)

[68] Yang, X., Zhao, X., Yang, K., Liu, Y., Liu, Y., Fu, W., Luo, Y.: Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34(10), 810–824 (2016)

[69] Nourinovin, S., Rahman, M.M., Park, S.J., Hamid, H., Philpott, M.P., Alomainy, A.: Terahertz dielectric characterization of three-dimensional organotypic treated basal cell carcinoma and corresponding double Debye model. IEEE Trans. Terahertz Sci. Technol. 13(3), 246–253 (2023)

[70] Wallace, V.P., Fitzgerald, A.J., Pickwell, E., Pye, R.J., Taday, P.F., Flanagan, N., Ha, T.: Terahertz pulsed spectroscopy of human basal cell carcinoma. Appl. Spectrosc. 60(10), 1127–1133(2006)

[71] Shi, W., Wang, Y., Hou, L., Ma, C., Yang, L., Dong, C., Wang, Z., Wang, H., Guo, J., Xu, S., Li, J.: Detection of living cervical cancer cells by transient terahertz spectroscopy. J. Biophotonics 14(1), e202000237 (2021)

[72] Chen, H., Han, J., Wang, D., Zhang, Y., Li, X., Chen, X.: In vivo estimation of breast cancer tissue volume in subcutaneous xenotransplantation mouse models by using a high-sensitivity fiber-based terahertz scanning imaging system. Front. Genet. 12, 700086 (2021)

[73] Sun, Z., Wu, X., Tao, R., Zhang, T., Liu, X., Wang, J., Wan, H., Zheng, S., Zhao, X., Zhang, Z., Yang, P.: Prediction of IDH mutation status of glioma based on terahertz spectral data. Spectrochim. Acta A Mol. Biomol. Spectrosc. 295, 122629(2023)

[74] Cherkasova, O.P., Konnikova, M.R., Nazarov, M.M., Vrazhnov, D.A., Kistenev, Yu.V., Shkurinov, A.P.: Terahertz spectroscopy of mouse blood serum in the dynamics of experimental glioblastoma. J. Biomed. Photonics. Engineering. 9(3), 030308 (2023)

[75] Yang, X., Shi, J., Wang, Y., Yang, K., Zhao, X., Wang, G., Xu, D., Wang, Y., Yao, J., Fu, W.: Label-free bacterial colony detection and viability assessment by continuous-wave terahertz transmission imaging. J. Biophotonics 11(8), e201700386 (2018)

[76] Galindo, C., Latypova, L., Barshtein, G., Livshits, L., Arbell, D., Einav, S., Feldman, Y.: The inhibition of glucose uptake to erythrocytes: microwave dielectric response. Eur. Biophys. J.51(4–5), 353–363 (2022)

[77] Kolesnikov, A.S., Kolesnikova, E.A., Popov, A.P., Nazarov, M.M., Shkurinov, A.P., Tuchin, V.V.: In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents. Quantum Electron. 44(7), 633–640 (2014)

[78] Chernomyrdin, N.V., Musina, G.R., Nikitin, P.V., Dolganova, I.N., Kucheryavenko, A.S., Alekseeva, A.I., Wang, Y., Xu, D., Shi, Q., Tuchin, V.V., Zaytsev, K.I.: Terahertz technology in intraoperative neurodiagnostics: a review. Opto-Electronic Adv.6(5), 220071 (2023)

[79] Musina, G.R., Dolganova, I.N., Chernomyrdin, N.V., Gavdush, A.A., Ulitko, V.E., Cherkasova, O.P., Tuchina, D.K., Nikitin, P.V., Alekseeva, A.I., Bal, N.V., Komandin, G.A., Kurlov, V.N., Tuchin, V.V., Zaytsev, K.I.: Optimal hyperosmotic agents for tissue immersion optical clearing in terahertz biophotonics. J. Biophotonics 13(12), e202000297 (2020)

[80] Zaytsev, K.I., Dolganova, I.N., Chernomyrdin, N.V., Katyba, G.M., Gavdush, A.A., Cherkasova, O.P., Komandin, G.A., Shchedrina, M.A., Khodan, A.N., Ponomarev, D.S., Reshetov, I.V., Karasik, V.E., Skorobogatiy, M., Kurlov, V.N., Tuchin, V.V.: The progress and perspectives of terahertz technology for diagnosis of neoplasms: a review. J. Opt. 22(1), 013001 (2020)

[81] Gavdush, A., Chernomyrdin, N., Komandin, G., Dolganova, I., Nikitin, P., Musina, G., Katyba, G., Kucheryavenko, A., Reshetov, I., Potapov, A., Tuchin, V., Zaytsev, K.: Terahertz dielectric spectroscopy of human brain gliomas and intact tissues ex vivo: double-Debye and double-overdamped-oscillator models of dielectric response. Biomed. Opt. Express 12(1), 69–83 (2021)

[82] Cherkasova, O.P., Serdyukov, D.S., Nemova, E.F., Ratushnyak, A.S., Kucheryavenko, A.S., Dolganova, I.N., Xu, G., Skorobogatiy, M., Reshetov, I.V., Timashev, P.S., Spektor, I.E., Zaytsev, K.I., Tuchin, V.V.: Cellular effects of terahertz waves. J. Biomed. Opt. 26(9), 090902 (2021)

[83] Zaytsev, K.I., Dolganova, I.N., Chernomyrdin, N.V., Komandin, G.A., Lavrukhin, D.V., Reshetov, I.V., Kurlov, V.N., Ponomarev, D.S., Tuchin, V.V., Spektor, I.E., Karasik, V.E.: Application of terahertz technologies in biophotonics. Part 2: Spectroscopy and visualization of malignant neoplasms. Photonics 13(8), 736–743(2019)

[84] Cong, M., Li, W., Liu, Y., Bi, J., Wang, X., Yang, X., Zhang, Z., Zhang, X., Zhao, Y.N., Zhao, R., Qiu, J.: Biomedical application of terahertz imaging technology: a narrative review. Quant. Imaging Med. Surg. 13(12), 8768–8786 (2023)

[85] Hernandez-Cardoso, G.G., Amador-Medina, L.F., Gutierrez-Torres, G., Reyes-Reyes, E.S., Benavides Martnez, C.A., Cardona Espinoza, C., Arce Cruz, J., Salas-Gutierrez, I., Murillo-Ortz, B.O., Castro-Camus, E.: Terahertz imaging demonstrates its diagnostic potential and reveals a relationship between cutaneous dehydration and neuropathy for diabetic foot syndrome patients. Sci. Rep. 12(1), 3110 (2022)

[86] Ushakov, A., Mamaeva, K., Seleznev, L., Rizaev, G., Bukin, V., Dolmatov, T., Chizhov, P., Bagdasarov, V., Garnov, S.: Pulsed THz radiation under ultrafast optical discharge of vacuum photodiode. Front Optoelectron. 17(1), 20 (2024)

[87] Hernandez-Cardoso, G.G., Singh, A.K., Castro-Camus, E.: Empirical comparison between effective medium theory models for the dielectric response of biological tissue at terahertz frequencies. Appl. Opt. 59(13), D6–D11 (2020)

[88] Cheon, H., Yang, H.J., Choi, M., Son, J.H.: Effective demethylation of melanoma cells using terahertz radiation. Biomed. Opt. Express 10(10), 4931–4941 (2019)

[89] Nikitkina, A.I., Bikmulina, P.Y., Gafarova, E.R., Kosheleva, N.V., Efremov, Y.M., Bezrukov, E.A., Butnaru, D.V., Dolganova, I.N., Chernomyrdin, N.V., Cherkasova, O.P., Gavdush, A.A., Timashev, P.S.: Terahertz radiation and the skin: a review. J. Biomed. Opt. 26(4), 043005 (2021)

[90] International Commission on Non-Ionizing Radiation Protection (ICNIRP): Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 74(4), 494–522 (1998)

[91] Minin, I.V., Minin, O.V.: Problems of metrology of terahertz radiation in medicine. Bull. SGUGiT. 3, 162–180 (2021)

[92] Wenfei, B., Rong, C., Qiang, L., Xiaobo, Z., Yintao, H., Yubin, G.: Investigations on Na+, K+-ATPase energy consumption in ion flow of hydrophilic pores by THz unipolar stimulation. iScience 26(10), 107849 (2023)

[93] Article Electromagnetic safety Material from Wikipedia - the free encyclopedia Electronic resource. Available at the website of: ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%B A%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D 0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F_%D0%B1%D0%B5%D0%B7%D0%BE%D0%BF%D0%B0%D1%81%-D0%BD%D0%BE%D1%81%D1%82%D1%8C (Date of the application 11.05.2024)

[94] Qiu, S., Fan, H., He, L.: Single-cell analysis reveals microbial spore responses to microwave radiation. J. Innov. Opt. Health Sci.16(2), 2244004 (2023)

[95] Peng, W., Wang, P., Tan, C., Zhao, H., Chen, K., Si, H., Tian, Y., Lou, A., Zhu, Z., Yuan, Y., Wu, K., Chang, C., Wu, Y., Chen, T.: High frequency terahertz stimulation alleviates neuropathic pain by inhibiting the pyramidal neuron activity in the anterior cingulate cortex of mice. Elife 13, 97444 (2024)

[96] Pu, Z., Wu, Y., Zhu, Z., Zhao, H., Cui, D.: A new horizon for neuroscience: terahertz biotechnology in brain research. Neural Regen. Res. 20(2), 309–325 (2025)

[97] Ding, W., Zhao, X., Wang, H., Wang, Y., Liu, Y., Gong, L., Lin, S., Liu, C., Li, Y.: Effect of terahertz electromagnetic field on the permeability of potassium channel Kv12. Int. J. Mol. Sci. 24(12),10271 (2023)

[98] Guo, L., Bo, W., Wang, K., Wang, S., Gong, Y.: Theoretical investigation on the effect of terahertz wave on Ca2+ transport in the calcium channel. iScience 25(1), 103561 (2022)

[99] Li, Y., Chang, C., Zhu, Z., Sun, L., Fan, C.: Terahertz wave enhances permeability of the voltage-gated calcium channel. J. Am. Chem. Soc. 143(11), 4311–4318 (2021)

[100] Bolvar, P.H., Nagel, M., Richter, F., Brucherseifer, M., Bttner, R.: Label-free THz sensing of genetic sequences: towards “THz biochips.” Philos. Trans. Ser. A Math. Eng. Sci. 362, 323–333(2004)

[101] Globus, T., Sizov, I., Gelmont, B.: Teraherz vibrational spectroscopy of E. coli and molecular constituents: computational modeling and experiment. J. Phys. D Appl. Phys. 36(11), 1314–1322(2013)

[102] Bogomazova, A., Vassina, E., Goryachkovskaya, T., Popik, V., Sokolov, A., Kolchanov, N., Lagarkova, M., Kiselev, S., Peltek, S.: No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation. Sci. Rep. 5, 7749 (2015)

[103] Alexandrov, B.S., Gelev, V., Bishop, A.R., Usheva, A., Rasmussen, K.: DNA breathing dynamics in the presence of a terahertz field. Phys. Lett. A 374(10), 1214–1217 (2010)

[104] Bock, J., Fukuyo, Y., Kang, S., Phipps, M.L., Alexandrov, L.B., Rasmussen, K.., Bishop, A.R., Rosen, E.D., Martinez, J.S., Chen, H.T., Rodriguez, G., Alexandrov, B.S., Usheva, A.: Mammalian stem cells reprogramming in response to terahertz radiation. PLoS ONE 5(12), e15806 (2010)

[105] Mingaleev, S.F., Gaididei, Y.B., Christiansen, P.L., Kivshar, Y.S.: Nonlinearity-induced conformational instability and dynamics of biopolymers. Europhys. Lett. 59(3), 403–409 (2002)

[106] Lundholm, I.V., Rodilla, H., Wahlgren, W.Y., Duelli, A., Bourenkov, G., Vukusic, J., Friedman, R., Stake, J., Schneider, T., Katona, G.: Terahertz radiation induces non-thermal structural changes associated with Frhlich condensation in a protein crystal. Struct Dyn. 2(5), 054702 (2015)

[107] Cancer. World Health Organization. Available at the website of: who.int/health-topics/cancer#tab=tab_2

[108] Sitnikov, D.S., Ilina, I.V., Revkova, V.A., Rodionov, S.A., Gurova, S.A., Shatalova, R.O., Kovalev, A.V., Ovchinnikov, A.V., Chefonov, O.V., Konoplyannikov, M.A., Kalsin, V.A., Baklaushev, V.P.: Effects of high intensity non-ionizing terahertz radiation on human skin fibroblasts. Biomed. Opt. Express 12(11), 7122–7138 (2021)

[109] Musina, G.R., Nikitin, P.V., Chernomyrdin, N.V., Dolganova, I.N., Gavdush, A.A., Komandin, G.A., Ponomarev, D.S., Potapov, A.A., Reshetov, I.V., Tuchin, V.V., Zaytsev, K.I.: Prospects of terahertz technology in diagnosis of human brain tumors: a review. J. Biomed. Photonics Eng. 6(2), 020201 (2020)

[110] Amini, T., Jahangiri, F., Ameri, Z., Hemmatian, M.A.: A review of feasible applications of THz waves in medical diagnostics and treatments. J. Lasers Med. Sci. 12(1), e92 (2021)

[111] Zhou, C., Xiong, L., Zhou, X., Li, L., Yan, Q.: Transcriptome profiling of guinea pig skin exposed to a high-power terahertz source. Environ. Mol. Mutagen. 63(1), 29–36 (2022)

[112] Tang, J., Yin, H., Ma, J., Bo, W., Yang, Y., Xu, J., Liu, Y., Gong, Y.: Terahertz electric field-induced membrane electroporation by molecular dynamics simulations. J. Membr. Biol. 251(5–6),681–693 (2018)

[113] Rothbart, N., Glck, A., Hbers, H.W.: Terahertz gas spectroscopy applied to medicine and metrology. IEEE Trans. Terahertz Sci. Technol. 99, 1–8 (2024)

[114] Cherkasova, O.P., Fedorov, V.I., Nemova, E.F., Pogodin, A.S.: Influence of terahertz laser radiation on the spectral characteristics and functional properties of albumin. Opt. Spectrosc. 107(4),534–537 (2009)