
- High Power Laser Science and Engineering
- Vol. 11, Issue 5, 05000e57 (2023)
Abstract
1 Introduction
Over the past few decades, laser pulses have been widely used in fundamental science, industry, medicine and so on. In particular, the laser–matter interaction has entered into the relativistic regime due to the invention of the chirped pulse amplification (CPA) technique[1]. Currently, the theoretical and experimental studies in this regime have mainly used Ti:sapphire and Nd:glass laser pulses with wavelengths of 0.8 or
Frequency chirp widely exists in femtosecond (fs) lasers, which can be produced easily by adjusting the grating spacing of the compressor in experiments. Chirped laser pulses (CLPs) have also been widely applied in laser–plasma interaction, such as improving the quality of electron beams[39–42], enhancing the radiation intensity of THz emission[43–45] and HHG[46,47]. In the nonlinear case, compared with un-chirped laser pulses, the negatively chirped laser pulses (NCLPs) are compressed longitudinally in plasma, while the positively chirped laser pulses (PCLPs) can be stretched[40]. However, the evolution of density perturbation at the position of the CLP and its subsequent effect on the refractive index are not considered. In particular, the compression of the NCLP can enhance the intensity of drive laser pulses and the perturbation of plasma density. This characteristic can be used effectively to control the generation of long-wavelength mid-IR pulses by photon deceleration. According to the dispersion relation of laser pulses,
Here, in order to improve the generation of a relativistic intensity, few-cycle, long carrier wavelength mid-IR pulse, we propose a scheme to effectively enhance the mid-IR pulse generation efficiency by controlling the chirp parameters of the NCLP. Due to the difference of phase velocity and group velocity of different frequency components of the NCLP, the NCLP is rapidly compressed longitudinally, which increases the intensity of the drive laser and plasma density perturbation. More pulse components can thus enter into the photon deceleration region, where the refractive index gradient is negative, that is,
Sign up for High Power Laser Science and Engineering TOC. Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
2 Mode and scheme
The schematic diagram of the scheme is shown in Figure 1. The projections at the bottom represent the profile of the plasma. In the scheme, the generation of a mid-IR pulse by the NCLP, that is, the high-frequency component first and low-frequency second, can be divided into three stages: (I) the wakefield excitation stage; (II) the electron layer compression stage; and (III) the pulse converter stage. In stage (I), the NCLP excites a bubble to move forward at the group velocity of the drive laser pulse. At the same time, each frequency component of the NCLP produces a special curving profile of the refractive index, as shown by the green curve, and the photons in the range of
Figure 1.Schematic of laser chirp controlled few-cycle mid-IR pulse generation. Due to the special curving profile of the refractive index of the NCLP and the plasma etching, the pulse is rapidly compressed longitudinally. As a result, a large number of photons approach the photon deceleration phase, and produce the mid-infrared frequency component, which then slips backwards into the bubble and moves forward together with the bubble. The red curves represent the distribution of the laser electric field on-axis, and the green curves represent the corresponding distribution of the refractive index of the NCLP. The blue arrows denote the photon emission directions relative to the bubble.
Photon deceleration is caused essentially by plasma optical modulation. The basic physics of mid-IR generation in plasma by the NCLP can be interpreted by 1D nonlinear theory[29]. The electric field of a CLP with the polarization along the y-direction that propagates along the x-direction can be expressed as follows:
The interaction of relativistic CLPs with underdense plasma can be described by the coupled equations under the Coulomb gauge[40,41,48–51]:
From Equation (2), we can get the refractive index of a CLP as follows:
The wavelength changes of the drive laser in a short time duration
We assume an average refractive index gradient of
3 Relativistic mid-infrared pulse generation
For the quantitative description for the generation of mid-IR pulses by NCLP interaction with underdense plasma, we first perform a series of 2D particle-in-cell (PIC) simulations by using the open source PIC code EPOCH[52]. The normalized vector potential of the laser pulse is
Figures 2(a)–2(c) show the evolution of the transverse electric field (
Figure 2.2D simulation of mid-IR generation with the NCLP. (a)–(c) Distributions of the plasma density () and transverse electric field (
) at different times. The orange curve is the electron density on-axis. (d) Spectral evolution as a function of the propagation time. (e) Spectral distribution of the on-axis laser electric field at
(blue),
(black) and
(red). (f) Temporal profile of the mid-IR electric field at
.
The compression of the NCLP enhances the generation efficiency of the mid-IR pulse and shortens the length of the plasma. Therefore, in order to investigate the pulse compression process in detail, we present the refractive index distribution of the drive laser. Figure 3 shows the refractive index and the evolution of pulse length of the NCLP. Meanwhile, the case without chirp is also given for comparison. Since both the
Figure 3.Comparison of refractive index and evolution of the NCLP and un-chirped pulse. Longitudinal distribution of the laser electric field and refractive index in the cases of (a) and (b) an un-chirped laser. (c), (d) The corresponding locations of the rise edge and the fall edge, corresponding to the case with and without chirp, respectively. The insets of (c) and (d) show the evolution of the laser peak electric field
.
To record the distance between the reference points and the pulse center, the position change of the rise edge and the fall edge in the propagation process is shown in Figures 3(c) and 3(d). Due to the plasma etching in the wakefield, the rise edges of the NCLP and un-chirped pulse both compress toward the center of the pulse, as shown by the red dots in Figures 3(c) and 3(d). However, the fall edge of the NCLP also compresses toward the center due to the positive refractive index gradient (photon acceleration). Therefore, at the earlier stage of interaction, the longitudinal bunching effect of the NCLP results from the photon acceleration and plasma etching. This compression on both edges results in a dramatic increase in pulse intensity and the efficient generation of a mid-IR pulse. The insets of Figures 3(c) and 3(d) show the evolution of the peak laser electric field. One can see that the intensity of the NCLP is significantly enhanced, approaching its maximum value of about
The generated mid-IR pulse by photon deceleration is a few-cycle pulse, and its CEP is very important for subsequent applications, since the CEP can directly affect the process of laser–matter interaction. Due to the difference between the phase velocity and the group velocity of waves of different frequency, there must be a phase slip between the drive NCLP
Figure 4.The evolution of the CEP at . (a) The generated mid-IR electric field as a function of the initial drive pulse phase
. The inset shows the electric field waveform for different
of the initial drive pulse (
, blue dashed;
, black solid;
, red dot dash). (b) The phase evolution of the mid-IR electric field with
variation.
4 Discussion
The process and efficiency of mid-IR pulse generation with the chirp parameter of
Width ( | |||
---|---|---|---|
b = –0.07 | 5.0% | 4.2–20.0 | |
b = –0.06 | 4.6% | 4.4–20.0 | |
b = –0.04 | 2.7% | 6.2–26.6 | |
b = –0.02 | 2.3% | 6.2–26.6 | |
b = 0 | 1.9% | 6.2–26.6 |
Table 1. The maximum energy conversion efficiency () of the generated mid-IR pulse with different chirp parameters.
Finally, we carry out a full-scale 3D PIC simulation as well to ensure the reliability of our scheme. The box size is
Figure 5.3D simulation of mid-IR generation with the NCLP. (a)–(c) The distributions of the plasma density () and the transverse electric field (
) at different times obtained from 3D PIC simulation. (d) Spectral distribution of the on-axis laser electric field at
(blue) and
(red). The inset is the temporal profile of the mid-IR electric field at
.
5 Conclusion
In conclusion, we have proposed and numerically demonstrated a scheme to effectively improve the generation efficiency of high-intensity, few-cycle and long carrier wavelength mid-IR pulses by controlling the chirp parameters of the NCLP. Compared with the case of the un-chirped pulse, due to the difference of phase velocity and group velocity of different frequency components of the NCLP, the plasma etching and the special refractive index can make the pulse rapidly compress longitudinally, and this compression can effectively enhance the pulse intensity and plasma density perturbation. As a result, the mid-IR pulses can be produced faster and the energy conversion efficiency becomes higher. The 2D PIC simulation results show that a relativistic few-cycle mid-IR pulse with a center wavelength of
References
[1] D. Strickland, G. Mourou. Opt. Commun., 55, 447(1985).
[2] G.-P. An, Y.-L. Chi, Y.-L. Dang, G.-Y. Fu, B. Guo, Y.-S. Huang, C.-Y. He, X.-C. Kong, X.-F. Lan, J.-C. Li, F.-L. Liu, J.-S. Shi, X.-J. Sun, Y. Wang, J.-L. Wang, L. Wang, Y.-Y. Wei, G. Wu, G.-L. Xu, X.-F. Xi, G.-J. Yang, C.-L. Zhang, Z. Zhang, Z.-P. Zheng, X.-D. Zhang, S.-P. Zhang. Matter Radiat. Extrem., 3, 219(2018).
[3] Y.-J. Gu, M. Jirka, O. Klimo, S. Weber. Matter Radiat. Extrem., 4, 064403(2019).
[4] K. Xue, Z.-K. Dou, F. Wan, T.-P. Yu, W.-M. Wang, J.-R. Ren, Q. Zhao, Y.-T. Zhao, Z.-F. Xu, J.-X. Li. Matter Radiat. Extrem., 5, 054402(2020).
[5] Y. Lu, G.-B. Zhang, J. Zhao, Y.-T. Hu, H. Zhang, D.-A. Li, Q.-N. Li, Y. Cao, Y.-B. Wu, Y. Yin, F.-Q. Shao, T.-P. Yu. Opt. Express, 29, 8926(2021).
[6] Y.-T. Hu, J. Zhao, H. Zhang, Y. Lu, W.-Q. Wang, L.-X. Hu, F.-Q. Shao, T.-P. Yu. Appl. Phys. Lett., 118, 054101(2021).
[7] C. Calabrese, A. M. Stingel, L. Shen, P. B. Petersen. Opt. Lett., 37, 2265(2012).
[8] C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, C. D. Lin. Nature, 483, 194(2012).
[9] B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, J. Biegert. Phys. Rev. X, 5, 021034(2015).
[10] W.-M. Wang, S. Kawata, Z.-M. Sheng, Y.-T. Li, L.-M. Chen, L.-J. Qian, J. Zhang. Opt. Lett., 36, 2608(2011).
[11] T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, H. C. Kapteyn. Science, 336, 1287(2012).
[12] J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, A. Baltuška. Nat. Photonics, 8, 927(2014).
[13] I. V. Pogorelsky, M. N. Polyanskiy, W. D. Kimura. Phys. Rev. Accel. Beams, 19, 091001(2016).
[14] D. Woodbury, L. Feder, V. Shumakova, C. Gollner, R. Schwartz, B. Miao, F. Salehi, A. Korolov, A. Pugžlys, A. Baltuška, H. M. Milchberg. Opt. Lett., 43, 1131(2018).
[15] G.-B. Zhang, N. A. M. Hafz, Y.-Y. Ma, L.-J. Qian, F.-Q. Shao, Z.-M. Sheng. Chin. Phys. Lett., 33, 095202(2016).
[16] B.-H. Chen, E. Wittmann, Y. Morimoto, P. Baum, E. Riedle. Opt. Express, 27, 21306(2019).
[17] U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. St. J. Russell, J. Biegert. Optica, 4, 1024(2017).
[18] I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, J. Biegert. Nat. Photonics, 9, 721(2015).
[19] P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, J. Moses. Nat. Photonics, 11, 222(2017).
[20] J. J. Pigeon, S. Y. Tochitsky, E. C. Welch, C. Joshi. Opt. Lett., 41, 3924(2016).
[21] F. Junginger, A. Sell, O. Schubert, B. Mayer, D. Brida, M. Marangoni, G. Cerullo, A. Leitenstorfer, R. Huber. Opt. Lett., 35, 2645(2010).
[22] J. J. Pigeon, S. Y. Tochitsky, C. Gong, C. Joshi. Opt. Lett., 39, 3246(2014).
[23] D. Haberberger, S. Tochitsky, C. Joshi. Opt. Express, 18, 17865(2010).
[24] M. N. Polyanskiy, I. V. Pogorelsky, V. Yakimenko. Opt. Express, 19, 7717(2011).
[25] L.-L. Yu, Y. Zhao, L.-J. Qian, M. Chen, S.-M. Weng, Z.-M. Sheng, D. A. Jaroszynski, W. B. Mori, J. Zhang. Nat. Commun., 7, 11893(2016).
[26] J. F. Qu, P. Liu, X. Y. Liu, R. J. Gray, P. McKenna, X. F. Li, S. Kawata, Q. Kong. New J. Phys., 22, 093007(2020).
[27] A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Y. Panchenko, A. Baltuška, A. M. Zheltikov. Optica, 3, 299(2016).
[28] C.-H. Pai, Y.-Y. Chang, L.-C. Ha, Z.-H. Xie, M.-W. Lin, J.-M. Lin, Y.-M. Chen, G. Tsaur, H.-H. Chu, S.-H. Chen, J.-Y. Lin, J. Wang, S.-Y. Chen. Phys. Rev. A, 82, 063804(2010).
[29] Z. Nie, C.-H. Pai, J. Hua, C. Zhang, Y. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Su, S. Liu, Y. Ma, X. Ning, Y. He, W. Lu, H.-H. Chu, J. Wang, W. B. Mori, C. Joshi. Nat. Photonics, 12, 489(2018).
[30] Z. Nie, C.-H. Pai, J. Zhang, X. Ning, J. Hua, Y. He, Y. Wu, Q. Su, S. Liu, Y. Ma, Z. Cheng, W. Lu, H.-H. Chu, J. Wang, C. Zhang, W. B. Mori, C. Joshi. Nat. Commun., 11, 2787(2020).
[31] X.-L. Zhu, S.-M. Weng, M. Chen, Z.-M. Sheng, J. Zhang. Light. Sci. Appl, 9, 46(2020).
[32] Z. Nie, Y. Wu, C. Zhang, W. B. Mori, C. Joshi, W. Lu, C.-H. Pai, J. Hua, J. Wang. Phys. Plasmas, 28, 023106(2021).
[33] X.-L. Zhu, M. Chen, S.-M. Weng, P. McKenna, Z.-M. Sheng, J. Zhang. Phys. Rev. Appl., 12, 054024(2019).
[34] X.-L. Zhu, W.-Y. Liu, S.-M. Weng, M. Chen, Z.-M. Sheng, J. Zhang. Matter Radiat. Extrem., 7, 014403(2022).
[35] S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, M. E. Jones. Phys. Rev. Lett., 62, 2600(1989).
[36] E. Esarey, A. Ting, P. Sprangle. Phys. Rev. A, 42, 3526(1990).
[37] W. B. Mori. IEEE J. Quantum Electron., 33, 1942(1997).
[38] W. Zhu, J. P. Palastro, T. M. Antonsen. Phys. Plasmas, 20, 073103(2013).
[39] V. B. Pathak, J. Vieira, R. A. Fonseca, L. O. Silva. New J. Phys., 14, 023057(2012).
[40] X. Zhang, B. Shen, L. Ji, W. Wang, J. Xu, Y. Yu, L. Yi, X. Wang, N. A. M. Hafz, V. Kulagin. Phys. Plasmas, 19, 053103(2012).
[41] S. Afhami, E. Eslami. AIP Adv., 4, 087142(2014).
[42] M. Rezaei-Pandari, A. R. Niknam, R. Massudi, F. Jahangiri, H. Hassaninejad, S. M. Khorashadizadeh. Phys. Plasmas, 24, 023112(2017).
[43] W.-M. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, K. Mima. Opt. Express, 16, 16999(2008).
[44] A. Mehta, J. Rajput, K. Kang, N. Kant. Laser Phys., 30, 045402(2020).
[45] M. C. Gurjar, K. Gopal, D. N. Gupta, V. V. Kulagin, H. Suk. IEEE Trans. Plasma Sci., 48, 3727(2020).
[46] J.-H. Kim, C. H. Nam. Phys. Rev. A, 65, 033801(2002).
[47] E. Neyra, F. Videla, J. A. Pérez-Hernández, M. F. Ciappina, L. Roso, G. A. Torchia. Laser Phys. Lett., 13, 115303(2016).
[48] P. Sprangle, E. Esarey, A. Ting. Phys. Rev. Lett., 64, 2011(1990).
[49] P. Sprangle, E. Esarey, A. Ting. Phys. Rev. A, 41, 4463(1990).
[50] L. Ghasemi, S. Afhami, E. Eslami. Phys. Plasmas, 22, 082123(2015).
[51] A. G. Khachatryan, F. A. van Goor, K.-J. Boller. Phys. Rev. E, 70, 067601(2004).
[52] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, C. P. Ridgers. Plasma Phys. Control. Fusion, 57, 113001(2015).
[53] A. K. Brodzik. IEEE Signal Proc. Lett., 13, 541(2006).
[54] Y. Su, S. Fang, Y. Gao, K. Zhao, G. Chang, Z. Wei. Appl. Phys. Lett., 118, 261102(2021).
[55] E. Esarey, C. B. Schroeder, W. P. Leemans. Rev. Mod. Phys., 81, 1229(2009).
[56] C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W. P. Leemans. Nature, 431, 538(2004).
[57] Y. Mizuta, T. Hosokai, S. Masuda, A. Zhidkov, K. Makito, N. Nakanii, S. Kajino, A. Nishida, M. Kando, M. Mori, H. Kotaki, Y. Hayashi, S. V. Bulanov, R. Kodama. Phys. Rev. Spec. Top. Accel. Beams, 15, 121301(2012).
[58] J. Huijts, I. A. Andriyash, L. Rovige, A. Vernier, J. Faure. Phys. Plasmas, 28, 043101(2021).

Set citation alerts for the article
Please enter your email address