• Acta Photonica Sinica
  • Vol. 47, Issue 5, 523002 (2018)
GAO Bo-wen1、2、*, MENG Xiao-jun1, SU Hai-ting1、2, HOU Xin-ping1、2, MA Qian1、2, and MENG Jing2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20184705.0523002 Cite this Article
    GAO Bo-wen, MENG Xiao-jun, SU Hai-ting, HOU Xin-ping, MA Qian, MENG Jing. Structural Design and Photovoltaic Performance Study of the Organic Ternary Hybrid Heterojunction Solar Cell[J]. Acta Photonica Sinica, 2018, 47(5): 523002 Copy Citation Text show less
    References

    [1] SUBBIAH J, PURUSHOTHAMAN B, WONG W, et al. Organic solar cells using a high-molecular-weight benzodithiophene-benzothiadiazole copolymer with an efficiency of 9.4%[J]. Advanced Materials, 2015, 27(4): 702-705.

    [2] LIU Yu-hang, ZHAO Jin-biao. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nature Communication, 2014, 5(5): 5293-5293.

    [3] HE Zhi-cai, XIAO Bing, CAO Yong, et al. Single-junction polymer solar cefficiency and photovoltage[J]. Nature Photonatics , 2015, 9: 174-179.

    [4] ZHAO Wei, QIAN Dong, HOU Jian-hui, et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability[J]. Advancd Materials, 2016, 28(23): 4734-4739.

    [5] ZHAO Wei, ZHANG Yang, HOU Jian-hui, et al. Molecular optimization enables over 13% efficiency in organic solar cells[J]. Journal of Americal Chemcal Society, 2017, 139(21): 7148-7151.

    [6] CHU Tao-ying, TSANG S, TAO Ye, et al. High-efficiency inverted solar cells based on a low band gap polymer with excellent air stability[J]. Solar Energy Materials & Solar Cells, 2012, 96(12): 155-160.

    [7] LI Xin-hui, HOU Jian-hui, YANG Yang. Dual plasmonic nanostructures for high performance inverted organic solar cells[J]. Advanced Materials, 2012, 24(22): 3046-3052.

    [8] YANG Ling-qiang, ZHOU Hua-xin, PRICE S, et al. Parallel-like bulk heterojunction polymer solar cells[J]. Journal of Americal Chemcal Society, 2012, 134: 5432-5435.

    [9] LU Lin-ping, XU Tao, YU Lu-ping, et al. Ternary blend polymer solar cells with enhanced power conversion efficiency[J]. Nature Photonics, 2014, 8: 716-722.

    [10] XIAO Ying-bao, WANG Hua, XU Jian-bin. Efficient ternary bulk heterojunction solar cells with PCDTBT as hole-cascade material[J]. Nano Energy, 2016, 19: 476-485.

    [11] GAO Bo-wen, MENG Jing, QUE Wen-xiu. Fluorine substituted thienyl-quinoxaline copolymer to reduce the HOMO level and increase open-circuit voltage for organic solar cells[J]. Materials Express, 2016, 6(1): 19-27.

    [12] GAO Bo-wen, MENG Jing. Ternary blend bulk heterojunction polymer solar cells based on double donors and single acceptor with ultra wideband absorption[J]. Materials Express, 2015, 5(6): 489-496.

    [13] GAO Bo-wen, WU Hai-mei, WEI Wei. The performance of new polymer solar cells based on thiophene and thienyl-quinoxaline with the post treatments[J]. Materials Letters, 2014, 122(5): 74-77.

    GAO Bo-wen, MENG Xiao-jun, SU Hai-ting, HOU Xin-ping, MA Qian, MENG Jing. Structural Design and Photovoltaic Performance Study of the Organic Ternary Hybrid Heterojunction Solar Cell[J]. Acta Photonica Sinica, 2018, 47(5): 523002
    Download Citation