• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 10, 2727 (2023)
CHEN Ting1, LIU Kui1, ZHENG Guozhu1, ZHANG Guangjun1..., ZHUANG Zichen1, LIN Yihang2 and WANG Shaorong1|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    CHEN Ting, LIU Kui, ZHENG Guozhu, ZHANG Guangjun, ZHUANG Zichen, LIN Yihang, WANG Shaorong. Research Process on Determination of Oxygen Surface Exchange Coefficient for Oxygen Electrode Materials of Reversible Solid Oxide Cells[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2727 Copy Citation Text show less
    References

    [1] WANG Y F, LEUNG D Y C, XUAN J, et al. A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell[J]. Renew Sustain Energy Rev, 2017, 75: 775-795.

    [2] LIU J, XU C. Hydrogen energy storage in China′s new-type power system: Application value, challenges, and prospects[J]. Chin J Engin Sci, 2022, 24(3): 89-99.

    [3] YANG G M, SU C, SHI H G, et al. Toward reducing the operation temperature of solid oxide fuel cells: Our past 15 years of efforts in cathode development[J]. Energy Fuels, 2020, 34(12): 15169-15194.

    [4] CHEN K F, JIANG S P. Failure mechanism of (La, Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells[J]. Int J Hydrog Energy, 2011, 36(17): 10541-10549.

    [5] JANUSCHEWSKY J, AHRENS M, OPITZ A, et al. Optimized La0.6Sr0.4CoO3-δ Thin-film electrodes with extremely fast oxygen-reduction kinetics[J]. Adv Funct Mater, 2009, 19(19): 3151-3156.

    [6] WANG S. High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3-δ phase structure and electrical conductivity[J]. Solid State Ion, 2003, 159(1/2): 71-78.

    [7] JUNG W, TULLER H L. Impedance study of SrTi1-xFexO3-δ (x=0.05 to 0.80) mixed ionic-electronic conducting model cathode[J]. Solid State Ion, 2009, 180(11-13): 843-847.

    [8] KIM J, SENGODAN S, KWON G, et al. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells[J]. Chem Sus Chem, 2014, 7(10): 2811-2815.

    [9] CHOI S, DAVENPORT T C, HAILE S M. Protonic ceramic electrochemical cells for hydrogen production and electricity generation: Exceptional reversibility, stability, and demonstrated faradaic efficiency[J]. Energy Environ Sci, 2019, 12(1): 206-215.

    [10] TARUTIN A P, LYAGAEVA J G, MEDVEDEV D A, et al. Recent advances in layered Ln2NiO4+δ nickelates: Fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells[J]. J Mater Chem A, 2021, 9(1): 154-195.

    [11] OHRING M. Thin-film evaporation processes[M]//Materials Science of Thin Films. Amsterdam: Elsevier, 2002: 95-144.

    [12] RIJNDERS G, BLANK D H A. In situ diagnostics by high-pressure RHEED during PLD[M]//Pulsed Laser Deposition of Thin Films. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2006: 85-97.

    [14] PLONCZAK P, BIEBERLE-HTTER A, SGAARD M, et al. Tailoring of LaxSr1-xCoyFe1-yO3-δNanostructure by pulsed laser deposition[J]. Adv Funct Mater, 2011, 21(14): 2764-2775.

    [15] METLENKO V, JUNG W, BISHOP S R, et al. Oxygen diffusion and surface exchange in the mixed conducting oxides SrTi1-yFeyO3-δ[J]. Phys Chem Chem Phys, 2016, 18(42): 29495-29505.

    [16] CHEN Y, ZHOU W, DING D, et al. Advances in cathode materials for solid oxide fuel cells: Complex oxides without alkaline earth metal elements[J]. Adv Energy Mater, 2015, 5(18): 1500537.

    [17] CRANK J. The Mathematics Of Diffusion, F, 1956[C].

    [18] WEPPNER W, HUGGINS R A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb[J]. J Electrochem Soc, 1977, 124(10): 1569-1578.

    [19] LANE J A, BENSON S J, WALLER D, et al. Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ[J]. Solid State Ion, 1999, 121(1-4): 201-208.

    [20] MAIER J. Physical chemistry of ionic materials: Ions and electrons in solids[M]. Chichester: Wiley, 2004.

    [21] BAUMANN F S, FLEIG J, HABERMEIER H U, et al. Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O3-δ model electrodes[J]. Solid State Ion, 2006, 177(11/12): 1071-1081.

    [22] PERRY N H, KIM J J, TULLER H L. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti, Fe)O3-x thin film case study[J]. Sci Technol Adv Mater, 2018, 19(1): 130-141.

    [23] DE SOUZA R A, KILNER J A. Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites[J]. Solid State Ion, 1999, 126(1/2): 153-161.

    [24] ARMSTRONG E N, DUNCAN K L, OH D J, et al. Determination of surface exchange coefficients of LSM, LSCF, YSZ, GDC constituent materials in composite SOFC cathodes[J]. J Electrochem Soc, 2011, 158(5): B492-B499.

    [25] YASUDA I, HISHINUMA M. Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites[J]. J Solid State Chem, 1996, 123(2): 382-390.

    [27] BOUWMEESTER H J M, KRUIDHOF H, BURGGRAAF A J. Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides[J]. Solid State Ion, 1994, 72: 185-194.

    [28] SMITH J B, NORBY T. On the steady-state oxygen permeation through La2NiO4+δ membranes[J]. J Electrochem Soc, 2006, 153(2): A233.

    [29] KATSUKI M, WANG S R, YASUMOTO K, et al. The oxygen transport in Gd-doped ceria[J]. Solid State Ion, 2002, 154/155: 589-595.

    [30] MORENO R, GARCA P, ZAPATA J, et al. Chemical strain kinetics induced by oxygen surface exchange in epitaxial films explored by time-resolved X-ray diffraction[J]. Chem Mater, 2013, 25(18): 3640-3647.

    [31] SHELDON B W, LAU K H A, RAJAMANI A. Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films[J]. J Appl Phys, 2001, 90(10): 5097-5103.

    [32] YANG Q, BURYE T E, LUNT R R, et al. In situ oxygen surface exchange coefficient measurements on lanthanum strontium ferrite thin films via the curvature relaxation method[J]. Solid State Ion, 2013, 249/250: 123-128.

    [33] ZHAO L A, PERRY N H, DAIO T, et al. Improving the Si impurity tolerance of Pr0.1Ce0.9O2-δ SOFC electrodes with reactive surface additives[J]. Chem Mater, 2015, 27(8): 3065-3070.

    [34] CHEN T, HARRINGTON G F, MASOOD J, et al. Emergence of rapid oxygen surface exchange kinetics during in situ crystallization of mixed conducting thin film oxides[J]. ACS Appl Mater Interfaces, 2019, 11(9): 9102-9116.

    [35] KUHN M, KIM J J, BISHOP S R, et al. Oxygen nonstoichiometry and defect chemistry of perovskite-structured BaxSr1-xTi1-yFeyO3-y/2+δ solid solutions[J]. Chem Mater, 2013, 25(15): 2970-2975.

    [36] DENK I, NOLL F, MAIER J. In situ profiles of oxygen diffusion in SrTiO3: Bulk behavior and boundary effects[J]. J Am Ceram Soc, 2005, 80(2): 279-285.

    [37] YU J, LEE J S, MAIER J. Peculiar nonmonotonic water incorporation in oxides detected by local in situ optical absorption spectroscopy[J]. Angew Chem Int Ed, 2007, 46(47): 8992-8994.

    [38] LEONHARDT M, DE SOUZA R A, CLAUS J, et al. Surface kinetics of oxygen incorporation into SrTiO3[J]. J Electrochem Soc, 2002, 149(2): J19.

    [39] BISHOP S R, KIM J J, THOMPSON N, et al. Probing redox kinetics in Pr doped ceria mixed ionic electronic conducting thin films by in situ optical absorption measurements[J]. ECS Trans, 2012, 45(1): 491-495.

    [40] SKIBA E J, CHEN T, PERRY N H. Simultaneous electrical, electrochemical, and optical relaxation measurements of oxygen surface exchange coefficients: Sr(Ti, Fe)O3-d film crystallization case study[J]. ACS Appl Mater Interfaces, 2020, 12(43): 48614-48630.

    [41] ZHANG D W, MACHALA M L, CHEN D, et al. Hydroxylation and cation segregation in (La0.5Sr0.5)FeO3-δ electrodes[J]. Chem Mater, 2020, 32(7): 2926-2934.

    [42] LEE Y L, LEE D, WANG X R, et al. Kinetics of oxygen surface exchange on epitaxial ruddlesden-popper phases and correlations to first-principles descriptors[J]. J Phys Chem Lett, 2016, 7(2): 244-249.

    [43] JACOBS R, MAYESHIBA T, BOOSKE J, et al. Material discovery and design principles for stable, high activity perovskite cathodes for solid oxide fuel cells[J]. Adv Energy Mater, 2018, 8(11): 1702708.

    [44] RIEDL C, SIEBENHOFER M, NENNING A, et al. Performance modulation through selective, homogenous surface doping of lanthanum strontium ferrite electrodes revealed by in situ PLD impedance measurements[J]. J Mater Chem A, 2022, 10(6): 2973-2986.

    [45] PERRY N H, PERGOLESI D, BISHOP S R, et al. Defect chemistry and surface oxygen exchange kinetics of La-doped Sr(Ti, Fe)O3-α in oxygen-rich atmospheres[J]. Solid State Ion, 2015, 273: 18-24.

    [46] PERRY N H, ISHIHARA T. Roles of bulk and surface chemistry in the oxygen exchange kinetics and related properties of mixed conducting perovskite oxide electrodes[J]. Materials, 2016, 9(10): 858.

    [47] JUNG W, TULLER H L. Investigation of surface Sr segregation in model thin film solid oxidefuel cell perovskite electrodes[J]. Energy Environ Sci, 2012, 5(1): 5370-5378.

    [48] MUTORO E, CRUMLIN E J, BIEGALSKI M D, et al. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxidefuel cells[J]. Energy Environ Sci, 2011, 4(9): 3689-3696.

    [49] RUPP G M, TLLEZ H, DRUCE J, et al. Surface chemistry of La0.6Sr0.4CoO3-δ thin films and its impact on the oxygen surface exchange resistance[J]. J Mater Chem A, 2015, 3(45): 22759-22769.

    [50] TSVETKOV N, LU Q Y, SUN L X, et al. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface[J]. Nat Mater, 2016, 15(9): 1010-1016.

    [51] YANG G N, KIM S Y, SOHN C, et al. Influence of heterointerfaces on the kinetics of oxygen surface exchange on epitaxial La1.85Sr0.15CuO4 thin films[J]. Appl Sci, 2021, 11(9): 3778.

    [52] RIEDL C, SCHMID A, NENNING A, et al. Outstanding oxygen reduction kinetics of La0.6Sr0.4FeO3-δ surfaces decorated with platinum nanoparticles[J]. J Electrochem Soc, 2020, 167(10): 104514.

    [53] MA Y X, BURYE T E, NICHOLAS J D. Pt current collectors artificially boosting praseodymium doped ceria oxygen surface exchange coefficients[J]. J Mater Chem A, 2021, 9(43): 24406-24418.

    [54] BURRIEL M, TLLEZ H, CHATER R J, et al. Influence of crystal orientation and annealing on the oxygen diffusion and surface exchange of La2NiO4+δ[J]. J Phys Chem C, 2016, 120(32): 17927-17938.

    [55] DEVELOS-BAGARINAO K, KISHIMOTO H, DE VERO J, et al. Effect of La0.6Sr0.4Co0.2Fe0.8O3-δ microstructure on oxygen surface exchange kinetics[J]. Solid State Ion, 2016, 288: 6-9.

    [56] GAO R, FERNANDEZ A, CHAKRABORTY T, et al. Correlating surface crystal orientation and gas kinetics in perovskite oxide electrodes[J]. Adv Mater, 2021, 33(20): 2100977.

    [57] WALDOW S P, STATHAM B J, WARDENGA H F, et al. Oxygen surface exchange and tracer diffusion in differently oriented thin films of Gd-doped CeO2[J]. ACS Appl Mater Interfaces, 2020, 12(32): 36768-36777.

    [58] YANG G E, EL LOUBANI M, HILL D, et al. Control of crystallographic orientation in Ruddlesden-Popper for fast oxygen reduction[J]. Catal Today, 2023, 409: 87-93.

    [59] ZHU Y M, HE Z Y, CHOI Y, et al. Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides[J]. Nat Commun, 2020, 11: 4299.

    [60] CHEN T, HARRINGTON G F, SASAKI K, et al. Impact of microstructure and crystallinity on surface exchange kinetics of strontium titanium iron oxide perovskite by in situ optical transmission relaxation approach[J]. J Mater Chem A, 2017, 5(44): 23006-23019.

    [61] CHEN Y, TLLEZ H, BURRIEL M, et al. Segregated chemistry and structure on (001) and (100) surfaces of (La1-xSrx)2CoO4 override the crystal anisotropy in oxygen exchange kinetics[J]. Chem Mater, 2015, 27(15): 5436-5450.

    [62] NAVICKAS E, HUBER T M, CHEN Y, et al. Fast oxygen exchange and diffusion kinetics of grain boundaries in Sr-doped LaMnO3 thin films[J]. Phys Chem Chem Phys, 2015, 17(12): 7659-7669.

    [63] PERRY N H, HARRINGTON G F, TULLER H L. Electrochemical ionic interfaces[M]//Metal Oxide-Based Thin Film Structures. Amsterdam: Elsevier, 2018: 79-106.

    [64] POROTNIKOVA N, FARLENKOV A, NAUMOV S, et al. Effect of grain boundaries in La0.84Sr0.16CoO3-δ on oxygen diffusivity and surface exchange kinetics[J]. Phys Chem Chem Phys, 2021, 23(19): 11272-11286.

    [65] JANUSCHEWSKY J, STGER-POLLACH M, KUBEL F, et al. La0.6Sr0.4CoO3-δ (LSC) thin film electrodes with very fast oxygen reduction kinetics prepared by a sol-gel route[J]. Z Für Phys Chem, 2012, 226(9/10): 889-899.

    [66] EVANS A, MARTYNCZUK J, STENDER D, et al. Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-δ Cathodes[J]. Adv Energy Mater, 2015, 5(1): 1400747.

    [67] CAVALLARO A, PRAMANA S S, RUIZ-TREJO E, et al. Amorphous-cathode-route towards low temperature SOFC[J]. Sustainable Energy Fuels, 2018, 2(4): 862-875.

    [68] SHIN H H, MULLINS C B, GOODENOUGH J B. Oxygen-electrode catalysis on oxoperovskites at 700 ℃ versus 20 ℃[J]. Chem Mater, 2018, 30(3): 629-635.

    [69] LANE J A, KILNER J A. Measuring oxygen diffusion and oxygen surface exchange by conductivity relaxation[J]. Solid State Ion, 2000, 136/137: 997-1001.

    CHEN Ting, LIU Kui, ZHENG Guozhu, ZHANG Guangjun, ZHUANG Zichen, LIN Yihang, WANG Shaorong. Research Process on Determination of Oxygen Surface Exchange Coefficient for Oxygen Electrode Materials of Reversible Solid Oxide Cells[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2727
    Download Citation