[1] WANG Y F, LEUNG D Y C, XUAN J, et al. A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell[J]. Renew Sustain Energy Rev, 2017, 75: 775-795.
[2] LIU J, XU C. Hydrogen energy storage in China′s new-type power system: Application value, challenges, and prospects[J]. Chin J Engin Sci, 2022, 24(3): 89-99.
[3] YANG G M, SU C, SHI H G, et al. Toward reducing the operation temperature of solid oxide fuel cells: Our past 15 years of efforts in cathode development[J]. Energy Fuels, 2020, 34(12): 15169-15194.
[4] CHEN K F, JIANG S P. Failure mechanism of (La, Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells[J]. Int J Hydrog Energy, 2011, 36(17): 10541-10549.
[5] JANUSCHEWSKY J, AHRENS M, OPITZ A, et al. Optimized La0.6Sr0.4CoO3-δ Thin-film electrodes with extremely fast oxygen-reduction kinetics[J]. Adv Funct Mater, 2009, 19(19): 3151-3156.
[6] WANG S. High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3-δ phase structure and electrical conductivity[J]. Solid State Ion, 2003, 159(1/2): 71-78.
[7] JUNG W, TULLER H L. Impedance study of SrTi1-xFexO3-δ (x=0.05 to 0.80) mixed ionic-electronic conducting model cathode[J]. Solid State Ion, 2009, 180(11-13): 843-847.
[8] KIM J, SENGODAN S, KWON G, et al. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells[J]. Chem Sus Chem, 2014, 7(10): 2811-2815.
[9] CHOI S, DAVENPORT T C, HAILE S M. Protonic ceramic electrochemical cells for hydrogen production and electricity generation: Exceptional reversibility, stability, and demonstrated faradaic efficiency[J]. Energy Environ Sci, 2019, 12(1): 206-215.
[10] TARUTIN A P, LYAGAEVA J G, MEDVEDEV D A, et al. Recent advances in layered Ln2NiO4+δ nickelates: Fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells[J]. J Mater Chem A, 2021, 9(1): 154-195.
[11] OHRING M. Thin-film evaporation processes[M]//Materials Science of Thin Films. Amsterdam: Elsevier, 2002: 95-144.
[12] RIJNDERS G, BLANK D H A. In situ diagnostics by high-pressure RHEED during PLD[M]//Pulsed Laser Deposition of Thin Films. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2006: 85-97.
[14] PLONCZAK P, BIEBERLE-HTTER A, SGAARD M, et al. Tailoring of LaxSr1-xCoyFe1-yO3-δNanostructure by pulsed laser deposition[J]. Adv Funct Mater, 2011, 21(14): 2764-2775.
[15] METLENKO V, JUNG W, BISHOP S R, et al. Oxygen diffusion and surface exchange in the mixed conducting oxides SrTi1-yFeyO3-δ[J]. Phys Chem Chem Phys, 2016, 18(42): 29495-29505.
[16] CHEN Y, ZHOU W, DING D, et al. Advances in cathode materials for solid oxide fuel cells: Complex oxides without alkaline earth metal elements[J]. Adv Energy Mater, 2015, 5(18): 1500537.
[17] CRANK J. The Mathematics Of Diffusion, F, 1956[C].
[18] WEPPNER W, HUGGINS R A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb[J]. J Electrochem Soc, 1977, 124(10): 1569-1578.
[19] LANE J A, BENSON S J, WALLER D, et al. Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ[J]. Solid State Ion, 1999, 121(1-4): 201-208.
[20] MAIER J. Physical chemistry of ionic materials: Ions and electrons in solids[M]. Chichester: Wiley, 2004.
[21] BAUMANN F S, FLEIG J, HABERMEIER H U, et al. Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O3-δ model electrodes[J]. Solid State Ion, 2006, 177(11/12): 1071-1081.
[22] PERRY N H, KIM J J, TULLER H L. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti, Fe)O3-x thin film case study[J]. Sci Technol Adv Mater, 2018, 19(1): 130-141.
[23] DE SOUZA R A, KILNER J A. Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites[J]. Solid State Ion, 1999, 126(1/2): 153-161.
[24] ARMSTRONG E N, DUNCAN K L, OH D J, et al. Determination of surface exchange coefficients of LSM, LSCF, YSZ, GDC constituent materials in composite SOFC cathodes[J]. J Electrochem Soc, 2011, 158(5): B492-B499.
[25] YASUDA I, HISHINUMA M. Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites[J]. J Solid State Chem, 1996, 123(2): 382-390.
[27] BOUWMEESTER H J M, KRUIDHOF H, BURGGRAAF A J. Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides[J]. Solid State Ion, 1994, 72: 185-194.
[28] SMITH J B, NORBY T. On the steady-state oxygen permeation through La2NiO4+δ membranes[J]. J Electrochem Soc, 2006, 153(2): A233.
[29] KATSUKI M, WANG S R, YASUMOTO K, et al. The oxygen transport in Gd-doped ceria[J]. Solid State Ion, 2002, 154/155: 589-595.
[30] MORENO R, GARCA P, ZAPATA J, et al. Chemical strain kinetics induced by oxygen surface exchange in epitaxial films explored by time-resolved X-ray diffraction[J]. Chem Mater, 2013, 25(18): 3640-3647.
[31] SHELDON B W, LAU K H A, RAJAMANI A. Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films[J]. J Appl Phys, 2001, 90(10): 5097-5103.
[32] YANG Q, BURYE T E, LUNT R R, et al. In situ oxygen surface exchange coefficient measurements on lanthanum strontium ferrite thin films via the curvature relaxation method[J]. Solid State Ion, 2013, 249/250: 123-128.
[33] ZHAO L A, PERRY N H, DAIO T, et al. Improving the Si impurity tolerance of Pr0.1Ce0.9O2-δ SOFC electrodes with reactive surface additives[J]. Chem Mater, 2015, 27(8): 3065-3070.
[34] CHEN T, HARRINGTON G F, MASOOD J, et al. Emergence of rapid oxygen surface exchange kinetics during in situ crystallization of mixed conducting thin film oxides[J]. ACS Appl Mater Interfaces, 2019, 11(9): 9102-9116.
[35] KUHN M, KIM J J, BISHOP S R, et al. Oxygen nonstoichiometry and defect chemistry of perovskite-structured BaxSr1-xTi1-yFeyO3-y/2+δ solid solutions[J]. Chem Mater, 2013, 25(15): 2970-2975.
[36] DENK I, NOLL F, MAIER J. In situ profiles of oxygen diffusion in SrTiO3: Bulk behavior and boundary effects[J]. J Am Ceram Soc, 2005, 80(2): 279-285.
[37] YU J, LEE J S, MAIER J. Peculiar nonmonotonic water incorporation in oxides detected by local in situ optical absorption spectroscopy[J]. Angew Chem Int Ed, 2007, 46(47): 8992-8994.
[38] LEONHARDT M, DE SOUZA R A, CLAUS J, et al. Surface kinetics of oxygen incorporation into SrTiO3[J]. J Electrochem Soc, 2002, 149(2): J19.
[39] BISHOP S R, KIM J J, THOMPSON N, et al. Probing redox kinetics in Pr doped ceria mixed ionic electronic conducting thin films by in situ optical absorption measurements[J]. ECS Trans, 2012, 45(1): 491-495.
[40] SKIBA E J, CHEN T, PERRY N H. Simultaneous electrical, electrochemical, and optical relaxation measurements of oxygen surface exchange coefficients: Sr(Ti, Fe)O3-d film crystallization case study[J]. ACS Appl Mater Interfaces, 2020, 12(43): 48614-48630.
[41] ZHANG D W, MACHALA M L, CHEN D, et al. Hydroxylation and cation segregation in (La0.5Sr0.5)FeO3-δ electrodes[J]. Chem Mater, 2020, 32(7): 2926-2934.
[42] LEE Y L, LEE D, WANG X R, et al. Kinetics of oxygen surface exchange on epitaxial ruddlesden-popper phases and correlations to first-principles descriptors[J]. J Phys Chem Lett, 2016, 7(2): 244-249.
[43] JACOBS R, MAYESHIBA T, BOOSKE J, et al. Material discovery and design principles for stable, high activity perovskite cathodes for solid oxide fuel cells[J]. Adv Energy Mater, 2018, 8(11): 1702708.
[44] RIEDL C, SIEBENHOFER M, NENNING A, et al. Performance modulation through selective, homogenous surface doping of lanthanum strontium ferrite electrodes revealed by in situ PLD impedance measurements[J]. J Mater Chem A, 2022, 10(6): 2973-2986.
[45] PERRY N H, PERGOLESI D, BISHOP S R, et al. Defect chemistry and surface oxygen exchange kinetics of La-doped Sr(Ti, Fe)O3-α in oxygen-rich atmospheres[J]. Solid State Ion, 2015, 273: 18-24.
[46] PERRY N H, ISHIHARA T. Roles of bulk and surface chemistry in the oxygen exchange kinetics and related properties of mixed conducting perovskite oxide electrodes[J]. Materials, 2016, 9(10): 858.
[47] JUNG W, TULLER H L. Investigation of surface Sr segregation in model thin film solid oxidefuel cell perovskite electrodes[J]. Energy Environ Sci, 2012, 5(1): 5370-5378.
[48] MUTORO E, CRUMLIN E J, BIEGALSKI M D, et al. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxidefuel cells[J]. Energy Environ Sci, 2011, 4(9): 3689-3696.
[49] RUPP G M, TLLEZ H, DRUCE J, et al. Surface chemistry of La0.6Sr0.4CoO3-δ thin films and its impact on the oxygen surface exchange resistance[J]. J Mater Chem A, 2015, 3(45): 22759-22769.
[50] TSVETKOV N, LU Q Y, SUN L X, et al. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface[J]. Nat Mater, 2016, 15(9): 1010-1016.
[51] YANG G N, KIM S Y, SOHN C, et al. Influence of heterointerfaces on the kinetics of oxygen surface exchange on epitaxial La1.85Sr0.15CuO4 thin films[J]. Appl Sci, 2021, 11(9): 3778.
[52] RIEDL C, SCHMID A, NENNING A, et al. Outstanding oxygen reduction kinetics of La0.6Sr0.4FeO3-δ surfaces decorated with platinum nanoparticles[J]. J Electrochem Soc, 2020, 167(10): 104514.
[53] MA Y X, BURYE T E, NICHOLAS J D. Pt current collectors artificially boosting praseodymium doped ceria oxygen surface exchange coefficients[J]. J Mater Chem A, 2021, 9(43): 24406-24418.
[54] BURRIEL M, TLLEZ H, CHATER R J, et al. Influence of crystal orientation and annealing on the oxygen diffusion and surface exchange of La2NiO4+δ[J]. J Phys Chem C, 2016, 120(32): 17927-17938.
[55] DEVELOS-BAGARINAO K, KISHIMOTO H, DE VERO J, et al. Effect of La0.6Sr0.4Co0.2Fe0.8O3-δ microstructure on oxygen surface exchange kinetics[J]. Solid State Ion, 2016, 288: 6-9.
[56] GAO R, FERNANDEZ A, CHAKRABORTY T, et al. Correlating surface crystal orientation and gas kinetics in perovskite oxide electrodes[J]. Adv Mater, 2021, 33(20): 2100977.
[57] WALDOW S P, STATHAM B J, WARDENGA H F, et al. Oxygen surface exchange and tracer diffusion in differently oriented thin films of Gd-doped CeO2[J]. ACS Appl Mater Interfaces, 2020, 12(32): 36768-36777.
[58] YANG G E, EL LOUBANI M, HILL D, et al. Control of crystallographic orientation in Ruddlesden-Popper for fast oxygen reduction[J]. Catal Today, 2023, 409: 87-93.
[59] ZHU Y M, HE Z Y, CHOI Y, et al. Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides[J]. Nat Commun, 2020, 11: 4299.
[60] CHEN T, HARRINGTON G F, SASAKI K, et al. Impact of microstructure and crystallinity on surface exchange kinetics of strontium titanium iron oxide perovskite by in situ optical transmission relaxation approach[J]. J Mater Chem A, 2017, 5(44): 23006-23019.
[61] CHEN Y, TLLEZ H, BURRIEL M, et al. Segregated chemistry and structure on (001) and (100) surfaces of (La1-xSrx)2CoO4 override the crystal anisotropy in oxygen exchange kinetics[J]. Chem Mater, 2015, 27(15): 5436-5450.
[62] NAVICKAS E, HUBER T M, CHEN Y, et al. Fast oxygen exchange and diffusion kinetics of grain boundaries in Sr-doped LaMnO3 thin films[J]. Phys Chem Chem Phys, 2015, 17(12): 7659-7669.
[63] PERRY N H, HARRINGTON G F, TULLER H L. Electrochemical ionic interfaces[M]//Metal Oxide-Based Thin Film Structures. Amsterdam: Elsevier, 2018: 79-106.
[64] POROTNIKOVA N, FARLENKOV A, NAUMOV S, et al. Effect of grain boundaries in La0.84Sr0.16CoO3-δ on oxygen diffusivity and surface exchange kinetics[J]. Phys Chem Chem Phys, 2021, 23(19): 11272-11286.
[65] JANUSCHEWSKY J, STGER-POLLACH M, KUBEL F, et al. La0.6Sr0.4CoO3-δ (LSC) thin film electrodes with very fast oxygen reduction kinetics prepared by a sol-gel route[J]. Z Für Phys Chem, 2012, 226(9/10): 889-899.
[66] EVANS A, MARTYNCZUK J, STENDER D, et al. Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-δ Cathodes[J]. Adv Energy Mater, 2015, 5(1): 1400747.
[67] CAVALLARO A, PRAMANA S S, RUIZ-TREJO E, et al. Amorphous-cathode-route towards low temperature SOFC[J]. Sustainable Energy Fuels, 2018, 2(4): 862-875.
[68] SHIN H H, MULLINS C B, GOODENOUGH J B. Oxygen-electrode catalysis on oxoperovskites at 700 ℃ versus 20 ℃[J]. Chem Mater, 2018, 30(3): 629-635.
[69] LANE J A, KILNER J A. Measuring oxygen diffusion and oxygen surface exchange by conductivity relaxation[J]. Solid State Ion, 2000, 136/137: 997-1001.