• Optoelectronics Letters
  • Vol. 18, Issue 3, 143 (2022)
Minghai WANG1、2, Fengtao CUI3, Yang YANG3, and Wei DONG1、*
Author Affiliations
  • 1State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • 2Big Data and Network Management Center, Jilin University, Changchun 130012, China
  • 3Changchun Automotive Test Center Co., Ltd., Changchun 130012, China
  • show less
    DOI: 10.1007/s11801-022-1154-2 Cite this Article
    WANG Minghai, CUI Fengtao, YANG Yang, DONG Wei. Enhancing stimulated Brillouin scattering in the waveguide grating[J]. Optoelectronics Letters, 2022, 18(3): 143 Copy Citation Text show less
    References

    [1] KURODA K, SAWADA T, KURODA T, et al. Enhanced spontaneous emission observed at onedimensional photonic band edges[J]. Journal of the optical society of America B, 2009, 27(1):45-50.

    [2] WEN H, TERREL M, FAN S H, et al. Sensing with slow light in fiber Bragg gratings[J]. Sensors journal, IEEE, 2012, 12(1):156-163.

    [3] KRAUSS T F. Why do we need slow light?[J]. Nature photonics, 2008, 2:448-450.

    [4] FIGOTIN A, VITEBSKIY I. Slow light in photonic crystals[J]. Waves in random and complex media, 2006, 16(3):293-382.

    [5] THéVENAZ L. Slow and fast light in optical fibres[J]. Nature photonics, 2008, 2:474-481.

    [6] VLASOV Y A, O'BOYLE M, HAMANN H F, et al. Active control of slow light on a chip with photonic crystal waveguides[J]. Nature, 2005, 438(7064):65-69.

    [7] SOLJA?I? M, JOANNOPOULOS J D. Enhancement of nonlinear effects using photonic crystals[J]. Nature materials, 2004, 3(4):211-219.

    [8] CORCORAN B, MONAT C, GRILLET C, et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides[J]. Nature photonics, 2009, 3:206-210.

    [9] MONAT C, EBNALI-HEIDARI M, GRILLET C, et al. Four-wave mixing in slow light engineered silicon photonic crystal waveguides[J]. Optics express, 2010, 18(22):22915-22927.

    [10] MOK J T, STERKE C D, LITTLER I, et al. Dispersionless slow light using gap solitons[J]. Nature physics, 2006, 2(11):775-780.

    [11] DOWLING J P, SCALORA M, BLOEMER M J, et al. The photonic band edge laser:a new approach to gain enhancement[J]. Journal of applied physics, 1994, 75(4):1896-1899.

    [12] QIU W, RAKICH P T, SOLJACIC M, et al. Stimulated Brillouin scattering in slow light waveguides[EB/OL]. (2012-10-02)[2021-12-08]. http://export.arxiv.org/abs/1210.0738.

    [13] MERKLEIN M, KABAKOVA I V, BüTTNER T F S, et al. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits[J]. Nature communications, 2015, 6:6396.

    [14] ZARIFI A, STILLER B, MERKLEIN M, et al. On-chip correlation-based Brillouin sensing:design, experiment, and simulation[J]. Journal of the optical society of America B, 2019, 36(1):146.

    [15] SHEN W, ZENG P, YANG Z, et al. Chalcogenide glass photonic integration for improved 2μm optical interconnection[J]. Photonics research, 2020, 8(9):7.

    [16] WANG K, CHENG M, SHI H, et al. Demonstration of stimulated Brillouin scattering in a silicon suspended microring with photonic-phononic waveguide[J]. Journal of lightwave technology, 2022, 40(1):121-127.

    [17] CHOUDHARY A, MORRISON B, ARYANFAR I, et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain[J]. Journal of lightwave technology, 2017, 35(4):846-854.

    [18] MIRNAZIRY S R, WOLFF C, STEEL M J, et al. Stimulated Brillouin scattering in silicon/chalcogenide slot waveguides[J]. Optics express, 2016, 24(5): 4786-4800.

    [19] BOYD R W. Nonlinear optics[M]. 3rd ed. Salt Lake City:Academic Press, 2020.

    [20] JACOB B K. Slow light in various media:a tutorial[J]. Advances in optics and photonics, 2010, 2(3):287-318.

    WANG Minghai, CUI Fengtao, YANG Yang, DONG Wei. Enhancing stimulated Brillouin scattering in the waveguide grating[J]. Optoelectronics Letters, 2022, 18(3): 143
    Download Citation