[1] C H GREIN, P M YOUNG, H EHRENREICH. Minority carrier lifetimes in ideal InGaSb/InAs superlattices. Applied Physics Letters, 61, 2905-2907(1992).
[2] D L MITH, C MAILHIOT. Proposal for strained type II superlattice infrared detectors. Journal of applied Physics, 62, 2545-2548(1987).
[3] Kunxia WANG, Shimeng FENG, Huatian XU et al. Influence of multi-crystalline silicon surfaces passivation on pit topography of textured surface. Acta Photonica Sinica, 41, 236-239(2012).
[4] Huiqun ZHU, Ruiqin DING, Yi HU. Hydrogen passivation effect on GaAs thin films. Acta Photonica Sinica, 35, 1194-1198(2006).
[5] NYH , LEEPS , Y C HSUEH et al. Atomic layer deposition of zinc oxide on multiwalled carbon nanotubes for UV photodetector applications. Journal of the Electrochemical Society, 158, K24-K27(2011).
[6] T R B OONG, Y SHEN, X HU et al. Template-directed liquid ALD growth of TiO2 nanotube arrays: properties and potential in photovoltaic devices. Advanced Functional Materials, 20, 1390-1396(2010).
[7] N P DASGUPTA, X MENG, J W ELAM et al. Atomic layer deposition of metal sulfide materials. Accounts of Chemical Research, 48, 341-348(2015).
[8] H D UN, S CALVEZ, M D DAWSON et al. Thermal quenching mechanism of photoluminescence in 1.55 μm GaInNAsSb/Ga (N) As quantum-well structures. Applied Physics Letters, 89, 101909(2006).
[9] J ARDEEN, W SHOCKLEY. Deformation potentials and mobilities in non-polar crystals. Physical Review, 80, 72(1950).
[10] H Y FAN. Temperature dependence of the energy gap in semiconductors. Physical Review, 82, 149-154(1951).
[11] R KUDRAWIEC, M LATKOWSKA, M BARANOWSKI et al. Photoreflectance, photoluminescence, and microphotoluminescence study of optical transitions between delocalized and localized states in GaN0.02 As0.98, Ga0.95 In0.05N0.02As0.98,and GaN0.02As0.90Sb0.08 layers. Physical Review B, 88, 4673-4677(2013).
[12] E H STEENBERGEN, J A MASSENGALE, G ARIYAWANSA et al. Evidence of carrier localization in photoluminescence spectroscopy studies of mid-wavelength infrared InAs/InAs1-xSbx type II superlattices. Journal of Luminescence, 178, 451-456(2016).
[13] S LEE, H J JO, S MATHEWS et al. Investigation of carrier localization in InAs/AlSb type-II superlattice material system. Applied Physics Letters, 115, 211601(2019).
[14] E H STEENBERGEN, J A MASSENGALE, G ARIYAWANSA et al. Evidence of carrier localization in photoluminescence spectroscopy studies of mid-wavelength infrared InAs/InAs1-xSbx type-II superlattices. Journal of Luminescence, 178, 451-456(2016).
[15] I P SEETOH, C B SOH, E A FITZGERALD et al. Auger recombination as the dominant recombination process in indium nitride at low temperatures during steady-state photoluminescence. Applied Physics Letters, 102, 101112(2013).
[16] W PICKIN, J P R DAVID. Carrier decay in GaAs quantum wells. Applied Physics Letters, 56, 268-270(1990).
[17] Y P VARSHNI. Temperature dependence of the energy gap in semiconductors. Physica, 34, 149-154(1967).
[18] H D SUN, S CALVEZ, M D DAWSON et al. Thermal quenching mechanism of photoluminescence in 1.55 μm GaInNAsSb/Ga (N) As quantum-well structures. Applied Physics Letters, 89, 101909(2006).
[19] X CHEN, Y ZHOU, L ZHU et al. Evolution of interfacial properties with annealing in InAs/GaSb superlattice probed by infrared photoluminescence. Japanese Journal of Applied Physics, 53, 082201(2014).
[20] W PICKIN, J P R DAVID. Carrier decay in GaAs quantum wells. Applied Physics Letters, 56, 268-270(1990).