• Journal of Advanced Dielectrics
  • Vol. 12, Issue 4, 2244002 (2022)
Meixin Wang1、†, Tian Xia1、†, and Liwei D. Geng*
Author Affiliations
  • Department of Materials Science and Engineering, Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu, Sichuan 610065, P. R. China
  • show less
    DOI: 10.1142/S2010135X22440027 Cite this Article
    Meixin Wang, Tian Xia, Liwei D. Geng. Phase-field study of crystallographic texturing in piezoelectric polycrystals[J]. Journal of Advanced Dielectrics, 2022, 12(4): 2244002 Copy Citation Text show less
    References

    [1] S. J. Zhang, F. Li. High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys., 111, 031301(2012).

    [2] K. Uchino. Ferroelectric Devices(2009).

    [3] A. Toprak, O. Tigli. Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev., 1, 031104(2014).

    [4] E. Sun, W. Cao. Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci., 65, 124(2014).

    [5] U. F. Kocks, C. N. Tomé, H. R. Wenk. Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Material Properties(2000).

    [6] Y. K. Yan, Y. U. Wang, S. Priya. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. Appl. Phys. Lett., 100, 192905(2012).

    [7] Y. K. Yan, K. H. Cho, D. Maurya, A. Kumar, S. Kalinin, A. Khachaturyan, S. Priya. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics. Appl. Phys. Lett., 102, 042903(2013).

    [8] Y. Yan, J. E. Zhou, D. Maurya, Y. U. Wang, S. Priya. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nat. Commun., 7, 13089(2016).

    [9] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura. Lead-free piezoceramics. Nature, 432, 84(2004).

    [10] G. L. Messing, S. Trolier-McKinstry, E. M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P. W. Rehrig, K. B. Eitel, E. Suvaci, M. Seabaugh, K. S. Oh. Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci., 29, 45(2004).

    [11] S. F. Poterala, S. Trolier-McKinstry, R. J. Meyer, G. L. Messing. Processing, texture quality, and piezoelectric properties of 〈001〉C textured (1−x)Pb(Mg1/3Nb2/3)TiO3-xPbTiO3 ceramics. J. Appl. Phys., 110, 014105(2011).

    [12] P. Li, J. W. Zhai, B. Shen, S. J. Zhang, X. L. Li, F. Y. Zhu, X. M. Zhang. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Adv. Mater., 30, 1705171(2018).

    [13] Y. C. Liu, Y. F. Chang, F. Li, B. Yang, Y. Sun, J. Wu, S. T. Zhang, R. X. Wang, W. W. Cao. Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba, Ca)(Ti, Zr)O3 through integrating crystallographic texture and domain engineering. ACS Appl. Mater. Interfaces, 9, 29863(2017).

    [14] Y. F. Chang, B. Watson, M. Fanton, R. J. Meyer, G. L. Messing. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics. Appl. Phys. Lett., 111, 232901(2017).

    [15] Y. Yan, L. D. Geng, L.-F. Zhu, H. Leng, X. Li, H. Liu, D. Lin, K. Wang, Y. U. Wang, S. Priya. Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering. Adv. Sci., 9, 2105715(2022).

    [16] W. Yang, L.-Q. Chen. Computer simulation of the dynamics of 180∘ ferroelectric domains. J. Am. Ceram. Soc., 78, 2554(1995).

    [17] H.-L. Hu, L.-Q. Chen. Three-dimensional computer simulation of ferroelectric domain formation. J. Am. Ceram. Soc., 81, 492(1998).

    [18] S. Semenovskaya, A. G. Khachaturyan. Development of ferroelectric mixed states in a random field of static defects. J. Appl. Phys., 83, 5125(1998).

    [19] Y. U. Wang. Field-induced inter-ferroelectric phase transformations and domain mechanisms in high-strain piezoelectric materials: Insights from phase field modeling and simulation. J. Mater. Sci., 44, 5225(2009).

    [20] A. F. Devonshire, XCVI: Theory of barium titanate, Lond. Edinb. Dublin Philos. Mag. J. Sci.40, 1040 (1949).

    [21] H. Zhang, X. Lu, R. Wang, C. Wang, L. Zheng, Z. Liu, C. Yang, R. Zhang, B. Yang, W. Cao. Phase coexistence and Landau expansion parameters for a 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 single crystal. Phys. Rev. B, 96, 054109(2017).

    [22] A. J. Bell. Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes. J. Appl. Phys., 89, 3907(2001).

    [23] J. E. Zhou, Y. Yan, S. Priya, Y. U. Wang. Computational study of textured ferroelectric polycrystals: Texture development during templated grain growth. J. Appl. Phys., 121, 064108(2017).

    [24] M. E. Lines, A. M. Glass. Principles and Applications of Ferroelectrics and Related Materials(1979).

    [25] F. Li, S. J. Zhang, D. Damjanovic, L. Q. Chen, T. R. Shrout. Local structural heterogeneity and electromechanical responses of ferroelectrics: Learning from relaxor ferroelectrics. Adv. Funct. Mater., 28, 1801504(2018).

    [26] Y. Yan, L. D. Geng, H. Liu, H. Leng, X. Li, Y. U. Wang, S. Priya. Near-ideal electromechanical coupling in textured piezoelectric ceramics. Nat. Commun., 13, 3565(2022).

    Meixin Wang, Tian Xia, Liwei D. Geng. Phase-field study of crystallographic texturing in piezoelectric polycrystals[J]. Journal of Advanced Dielectrics, 2022, 12(4): 2244002
    Download Citation