• Nano-Micro Letters
  • Vol. 15, Issue 1, 238 (2023)
Minhan Li1、2、†, Fangzhou Zhang1、†, Min Kuang1, Yuanyuan Ma1、*, Ting Liao3, Ziqi Sun3, Wei Luo1, Wan Jiang1, and Jianping Yang1、**
Author Affiliations
  • 1Institute of Functional Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
  • 2College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
  • 3School of Mechanical, Medical and Process Engineering, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
  • show less
    DOI: 10.1007/s40820-023-01188-1 Cite this Article
    Minhan Li, Fangzhou Zhang, Min Kuang, Yuanyuan Ma, Ting Liao, Ziqi Sun, Wei Luo, Wan Jiang, Jianping Yang. Atomic Cu Sites Engineering Enables Efficient CO2 Electroreduction to Methane with High CH4/C2H4 Ratio[J]. Nano-Micro Letters, 2023, 15(1): 238 Copy Citation Text show less
    References

    [1] H. Xie, T. Wang, J. Liang, Q. Li, S. Sun, Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 21, 41–54 (2018).

    [2] A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S.-Z. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4, 1809–1831 (2018).

    [3] M. Li, Y. Ma, J. Chen, W. Luo, M. Sacchi et al., Residual chlorine induced cationic active species on porous Cu electrocatalyst for highly stable electrochemical co2 reduction to C2+. Angew. Chem. Int. Ed. 60, 11487–11493 (2021).

    [4] Y. Quan, J. Zhu, G. Zheng, Electrocatalytic reactions for converting CO2 to value-added products. Small Sci. 1, 2100043 (2021).

    [5] M. Li, J.-N. Zhang, Rational design of bimetallic catalysts for electrochemical CO2 reduction reaction: a review. Sci. China Chem. 66, 1288–1317 (2023).

    [6] Y. Cheng, S. Zhao, B. Johannessen, J.-P. Veder, M. Saunders et al., Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 30, e1706287 (2018).

    [7] H.B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao et al., Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    [8] H. Guo, D.-H. Si, H.-J. Zhu, Q.-X. Li, Y.-B. Huang et al., Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities. eScience 2, 295–303 (2022).

    [9] J. Gu, C.-S. Hsu, L. Bai, H.M. Chen, X. Hu, Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    [10] C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi et al., Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8, 1703487 (2018).

    [11] X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018).

    [12] Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018).

    [13] F. Yang, P. Song, X. Liu, B. Mei, W. Xing et al., Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem. Int. Ed. 57, 12303–12307 (2018).

    [14] D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2020).

    [15] M. Li, H. Wang, W. Luo, P.C. Sherrell, J. Chen et al., Heterogeneous single-atom catalysts for electrochemical co2 reduction reaction. Adv. Mater. 32, 2001848 (2020).

    [16] W. Zheng, J. Yang, H. Chen, Y. Hou, Q. Wang et al., Atomically defined undercoordinated active sites for highly efficient co2 electroreduction. Adv. Funct. Mater. 30, 1907658 (2019).

    [17] Y. Wang, Z. Chen, P. Han, Y. Du, Z. Gu et al., Single-atomic cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 8, 7113–7119 (2018).

    [18] Z. Weng, Y. Wu, M. Wang, J. Jiang, K. Yang et al., Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9, 415 (2018).

    [19] H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu et al., Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 141, 12717–12723 (2019).

    [20] Q. Zhao, C. Zhang, R. Hu, Z. Du, J. Gu et al., Selective etching quaternary max phase toward single atom copper immobilized mxene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 15, 4927–4936 (2021).

    [21] H. Xu, D. Rebollar, H. He, L. Chong, Y. Liu et al., Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 5, 623–632 (2020).

    [22] D. Karapinar, N.T. Huan, N. Ranjbar Sahraie, J. Li, D. Wakerley et al., Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: Selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58, 15098–15103 (2019).

    [23] K. Zhao, X. Nie, H. Wang, S. Chen, X. Quan et al., Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 11, 2455 (2020).

    [24] Y. Cai, J. Fu, Y. Zhou, Y.-C. Chang, Q. Min et al., Insights on forming N, O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 12, 586 (2021).

    [25] A. Guan, Z. Chen, Y. Quan, C. Peng, Z. Wang et al., Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 5, 1044–1053 (2020).

    [26] X. Li, H. Rong, J. Zhang, D. Wang, Y. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 13, 1842–1855 (2020).

    [27] Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff et al., Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017).

    [28] X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Metal-containing carbon nitride compounds: a new functional organic–metal hybrid material. Adv. Mater. 21, 1609–1612 (2009).

    [29] J. Gu, M. Jian, L. Huang, Z. Sun, A. Li et al., Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 16, 1141–1149 (2021).

    [30] S. Cao, H. Li, T. Tong, H.-C. Chen, A. Yu et al., Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 28, 1802169 (2018).

    [31] H. Zhang, C. Wang, H. Luo, J. Chen, M. Kuang et al., Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen. Angew. Chem. Int. Ed. 62, e202217071 (2023).

    [32] X. Zou, X. Huang, A. Goswami, R. Silva, B.R. Sathe et al., Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all ph values. Angew. Chem. Int. Ed. 53, 4372–4376 (2014).

    [33] F. He, K. Li, C. Yin, Y. Wang, H. Tang et al., Single Pd atoms supported by graphitic carbon nitride, a potential oxygen reduction reaction catalyst from theoretical perspective. Carbon 114, 619–627 (2017).

    [34] X. Chen, X. Zhao, Z. Kong, W.-J. Ong, N. Li, Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride. J. Mater. Chem. A 6, 21941–21948 (2018).

    [35] Q. Wang, K. Liu, J. Fu, C. Cai, H. Li et al., Atomically dispersed s-block magnesium sites for electroreduction of CO2 to CO. Angew. Chem. Int. Ed. 60, 25241–25245 (2021).

    [36] Y. Jiao, Y. Zheng, P. Chen, M. Jaroniec, S.-Z. Qiao, Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic co2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 139, 18093–18100 (2017).

    [37] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    [38] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    [39] B. Hammer, L.B. Hansen, J.K. Norskov, Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B 59, 7413 (1999).

    [40] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    [41] E. Skúlason, V. Tripkovic, M.E. Björketun, S. Gudmundsdóttir, G. Karlberg et al., Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010).

    [42] G. Gao, A.P. O’Mullane, A. Du, 2D Mxenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7, 494–500 (2017).

    [43] Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao et al., Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4(7), 615–622 (2021).

    [44] T. Zhang, W. Li, K. Huang, H. Guo, Z. Li et al., Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion. Nat. Commun. 12, 5265 (2021).

    [45] R.M. Yadav, Z. Li, T. Zhang, O. Sahin, S. Roy et al., Amine-functionalized carbon nanodot electrocatalysts converting carbon dioxide to methane. Adv. Mater. 34, 2105690 (2022).

    [46] Y. Xiao, G. Tian, W. Li, Y. Xie, B. Jiang et al., Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis. J. Am. Chem. Soc. 141, 2508–2515 (2019).

    [47] X. Zou, R. Silva, A. Goswami, T. Asefa, Cu-doped carbon nitride: Bio-inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride (g-C3N4) as a host material. Appl. Surf. Sci. 357, 221–228 (2015).

    [48] J. Ran, T.Y. Ma, G. Gao, X.-W. Du, S.Z. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic h2 production. Energ. Environ. Sci. 8, 3708–3717 (2015).

    [49] Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao et al., Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10, 2745–2751 (2016).

    [50] B. Yue, Q. Li, H. Iwai, T. Kako, J. Ye, Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci. Technol. Adv. Mater. 12, 034401 (2011).

    [51] Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang et al., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018).

    [52] H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao et al., Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 11, 3049 (2020).

    [53] X. Zhao, Y. Cao, L. Duan, R. Yang, Z. Jiang et al., Unleash electron transfer in C–H functionalization by mesoporous carbon-supported palladium interstitial catalysts. Natl. Sci. Rev. 8, nwaa126 (2020).

    [54] M. Li, N. Song, W. Luo, J. Chen, W. Jiang et al., Engineering surface oxophilicity of copper for electrochemical CO2 reduction to ethanol. Adv. Sci. 10, 2204579 (2022).

    [55] J. Xu, X. Zheng, Z. Feng, Z. Lu, Z. Zhang et al., Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 4, 233–241 (2021).

    [56] J. Liang, Y. Zheng, J. Chen, J. Liu, D. Hulicova-Jurcakova et al., Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem. Int. Ed. 51, 3892–3896 (2012).

    [57] G. Zhu, R. Guo, W. Luo, H.K. Liu, W. Jiang et al., Boron doping-induced interconnected assembly approach for mesoporous silicon oxycarbide architecture. Natl. Sci. Rev. 8, nwaa152 (2020).

    [58] Y. Zhang, L.-Z. Dong, S. Li, X. Huang, J.-N. Chang et al., Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nat. Commun. 12, 6390 (2021).

    [59] J. Feng, L. Zheng, C. Jiang, Z. Chen, L. Liu et al., Constructing single Cu-N3 sites for CO2 electrochemical reduction over a wide potential range. Green Chem. 23, 5461–5466 (2021).

    [60] J.-D. Yi, R. Xie, Z.-L. Xie, G.-L. Chai, T.-F. Liu et al., Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive mof: stabilizing key intermediates with hydrogen bonding. Angew. Chem. Int. Ed. 59, 23641–23648 (2020).

    [61] Y. Pan, H. Li, J. Xiong, Y. Yu, H. Du et al., Protecting the state of cu clusters and nanoconfinement engineering over hollow mesoporous carbon spheres for electrocatalytical C-C coupling. Appl. Catal. B: Environ. 306, 121111 (2022).

    [62] Y.-Y. Liu, H.-L. Zhu, Z.-H. Zhao, N.-Y. Huang, P.-Q. Liao et al., Insight into the effect of the d-orbital energy of copper ions in metal–organic frameworks on the selectivity of electroreduction of CO2 to CH4. ACS Catal. 12(5), 2749–2755 (2022).

    [63] Y. Cao, S. Chen, Q. Luo, H. Yan, Y. Lin et al., Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem. Int. Ed. 129(40), 12359–12364 (2017).

    Minhan Li, Fangzhou Zhang, Min Kuang, Yuanyuan Ma, Ting Liao, Ziqi Sun, Wei Luo, Wan Jiang, Jianping Yang. Atomic Cu Sites Engineering Enables Efficient CO2 Electroreduction to Methane with High CH4/C2H4 Ratio[J]. Nano-Micro Letters, 2023, 15(1): 238
    Download Citation