• High Power Laser and Particle Beams
  • Vol. 33, Issue 8, 081004 (2021)
Zhiguang Zhang, Huizhen Yang*, Jinlong Liu, Songheng Li, Hang Su, Yuxiang Luo, and Xiewen Wei
Author Affiliations
  • School of Electrical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
  • show less
    DOI: 10.11884/HPLPB202133.210295 Cite this Article
    Zhiguang Zhang, Huizhen Yang, Jinlong Liu, Songheng Li, Hang Su, Yuxiang Luo, Xiewen Wei. Research progress in deep learning based WFSless adaptive optics system[J]. High Power Laser and Particle Beams, 2021, 33(8): 081004 Copy Citation Text show less
    References

    [1] Shorter R S. Principles of adaptive optics, 3rd edn., by Robert K. Tyson[J]. Contemporary Physics, 52, 501-502(2011).

    [3] Yazdani R, Hajimahmoodzadeh M, Fallah H R. Adaptive phase aberration correction based on imperialist competitive algorithm[J]. Applied Optics, 53, 132-140(2014).

    [5] Facomprez A, Beaurepaire E, Débarre D. Accuracy of correction in modal sensorless adaptive optics[J]. Optics Express, 20, 2598-2612(2012).

    [6] Huang Linhai, Rao Changhui. Wavefront sensorless adaptive optics: a general model-based approach[J]. Optics Express, 19, 371-379(2011).

    [8] Zommer S, Ribak E N, Lipson S G, et al. Simulated annealing in ocular adaptive optics[J]. Optics Letters, 31, 939-941(2006).

    [10] Yang Huizhen, Li Xinyang. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor[J]. Optics & Laser Technology, 43, 630-635(2011).

    [11] Booth M J. Wavefront sensorless adaptive optics for large aberrations[J]. Optics Letters, 32, 5-7(2007).

    [13] Wen Lianghua, Yang Ping, Wang Shuai, et al. A high speed model-based approach for wavefront sensorless adaptive optics systems[J]. Optics & Laser Technology, 99, 124-132(2018).

    [14] Huang Linhai. Coherent beam combination using a general model-based method[J]. Chinese Physics Letters, 31, 094205(2014).

    [15] Wen Lianghua, Yang Ping, Yang Kangjian, et al. Synchronous model-based approach for wavefront sensorless adaptive optics system[J]. Optics Express, 25, 20584-20597(2017).

    [16] Song Hong, Fraanje R, Schitter G, et al. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system[J]. Optics Express, 18, 24070-24084(2010).

    [17] Angel J R P, Wizinowich P, Lloyd-Hart M, et al. Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 348, 221-224(1990).

    [18] Sandler D G, Barrett T K, Palmer D A, et al. Use of a neural network to control an adaptive optics system for an astronomical telescope[J]. Nature, 351, 300-302(1991).

    [19] Barrett T K, Sandler D G. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images[J]. Applied Optics, 32, 1720-1727(1993).

    [20] Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 43, 1235-1238(2018).

    [21] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture f computer vision[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition. 2016: 28182826.

    [22] Byrd R H, Lu Peihuang, Nocedal J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 16, 1190-1208(1995).

    [23] Nishizaki Y, Valdivia M, Horisaki R, et al. Deep learning wavefront sensing[J]. Optics Express, 27, 240-251(2019).

    [24] Chollet F. Xception: Deep learning with depthwise separable convolutions[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition. 2017: 12511258.

    [25] Kingma D, Ba J. Adam: A method f stochastic optimization[DBOL]. arXiv preprint, arXiv: 1412.6980, 2014.

    [26] Tian Qinghua, Lu Chenda, Liu Bo, et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system[J]. Optics Express, 27, 10765-10776(2019).

    [27] Polo A, Haber A, Pereira S F, et al. An innovative and efficient method to control the shape of push-pull membrane deformable mirror[J]. Optics Express, 20, 27922-27932(2012).

    [28] Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 21, 215829(1982).

    [29] Ma Huimin, Liu Haiqiu, Qiao Yan, et al. Numerical study of adaptive optics compensation based on convolutional neural networks[J]. Optics Communications, 433, 283-289(2019).

    [30] Krizhevsky A, Sutskever I, Hinton G E. Image classification with deep convolutional neural wks[C]Proceedings of the 25th International Conference on Neural Infmation Processing Systems. 2012: 10971105.

    [32] Simonyan K, Zisserman A. Very deep convolutional wks f largescale image recognition[DBOL]. arXiv preprint, arXiv: 1409.1556, 2014.

    [33] Guo Hongyang, Xu Yangjie, Li Qing, et al. Improved machine learning approach for wavefront sensing[J]. Sensors, 19, 3533(2019).

    [34] Wu Yu, Guo Youming, Bao Hua, et al. Sub-millisecond phase retrieval for phase-diversity wavefront sensor[J]. Sensors, 20, 4877(2020).

    [35] Nvidia Tens RT[EBOL]. (20210709). https:developer.nvidia.comtensrt.

    [36] Vera E, Guzmán F, Weinberger C. Boosting the deep learning wavefront sensor for real-time applications [Invited][J]. Applied Optics, 60, B119-B124(2021).

    [37] Weinberger C, Guzmán F, Vera E. Improved training f the deep learning wavefront sens[C]Proceedings Volume 11448, Adaptive Optics Systems VII. 2020, 11448: 114484G.

    [38] Wang Kaiqiang, Zhang Mengmeng, Tang Ju, et al. Deep learning wavefront sensing and aberration correction in atmospheric turbulence[J]. PhotoniX, 2, 8(2021).

    [39] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning f image recognition[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition. 2016: 770778.

    [40] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 9, 1735-1780(1997).

    [41] Xin Qi, Ju Guohao, Zhang Chunyue, et al. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning[J]. Optics Express, 27, 26102-26119(2019).

    [42] Liu Xuewen, Mris T, Saunter C. Using long shtterm memy f wavefront prediction in adaptive optics[C]Proceeding of the 28th International Conference on Artificial Neural wks. Munich: Springer, 2019: 537542.

    [43] Chen Ying. LSTM recurrent neural network prediction algorithm based on Zernike modal coefficients[J]. Optik, 203, 163796(2020).

    [44] Swanson R, Lamb M, Creia C, et al. Wavefront reconstruction prediction with convolutional neural wks[C]Proceedings Volume 10703, Adaptive Optics Systems VI. 2018, 10703: 107031F.

    [45] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 518, 529-533(2015).

    [46] Hu Ke, Xu Bing, Xu Zhenxing, et al. Self-learning control for wavefront sensorless adaptive optics system through deep reinforcement learning[J]. Optik, 178, 785-793(2019).

    [47] Hu Ke, Xu Zhenxing, Yang Wei, et al. Build the structure of WFSless AO system through deep reinforcement learning[J]. IEEE Photonics Technology Letters, 30, 2033-2036(2018).

    [48] Konda V R, Tsitsiklis J N. Actcritic algithms[C]Proceedings of Advances in Neural Infmation Processing Systems. 2000: 10081014.

    [49] Nousiainen J, Rajani C, Kasper M, et al. Adaptive optics control using model-based reinforcement learning[J]. Optics Express, 29, 15327-15344(2021).

    [50] Cantalloube F, Farley O, Milli J, et al. Wind-driven halo in high-contrast images. I. Analysis of the focal-plane images of SPHERE[J]. Astronomy and Astrophysics, 638, A98(2020).

    [51] Lman R, Haffert S Y, Radhakrishnan V M, et al. Selfoptimizing adaptive optics control with reinfcement learning[C]Proceedings Volume 11448, Adaptive Optics Systems VII. 2020, 11448: 1144849.

    [52] P E H, Haffert S Y, Radhakrishnan V M, et al. High Contrast Imaging f Python (HCIPy): an opensource adaptive optics conagraph simulat[C]Proceedings Volume 10703, Adaptive Optics Systems VI. 2018, 10703: 1070342.

    [53] Gendron E, Léna P. Astronomical adaptive optics. II. Experimental results of an optimized modal control[J]. Astronomy and Astrophysics Supplement Series, 111, 153-167(1995).

    [54] Conan R, Creia C. Objectiented Matlab adaptive optics toolbox[C]Proceedings Volume 9148, Adaptive Optics Systems IV. 2014, 9148: 91486C.

    [55] Rigaut F, Van Dam M. Simulating astronomical adaptive optics systems using YAO[C]Third AO4ELT Conference Adaptive Optics f Extremely Large Telescopes. 2013.

    [56] Basden A G, Bharmal N A, Jenkins D, et al. The Durham Adaptive Optics Simulation Platform (DASP): Current status[J]. SoftwareX, 7, 63-69(2018).

    [57] Zhu Licheng, Wen Lianghua, Yang Ping, et al. Aberration correction based on wavefront sensorless adaptive optics in membrane diffractive optical telescope[J]. Optics Communications, 451, 220-225(2019).

    [58] Marx V. Microscopy: hello, adaptive optics[J]. Nature Methods, 14, 1133-1136(2017).

    [59] Booth M J. Adaptive optical microscopy: the ongoing quest for a perfect image[J]. Light: Science & Applications, 3, e165(2014).

    [60] Hussain S A, Kubo T, Hall N, et al. Wavefront-sensorless adaptive optics with a laser-free spinning disk confocal microscope[J]. Journal of Microscopy(2020).

    [62] Qin Zhongya, He Sicong, Yang Chao, et al. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo[J]. Light: Science & Applications, 9, 79(2020).

    [63] Jian Yifan, Lee Sujin, Ju M J, et al. Lens-based wavefront sensorless adaptive optics swept source OCT[J]. Scientific Reports, 6, 27620(2016).

    Zhiguang Zhang, Huizhen Yang, Jinlong Liu, Songheng Li, Hang Su, Yuxiang Luo, Xiewen Wei. Research progress in deep learning based WFSless adaptive optics system[J]. High Power Laser and Particle Beams, 2021, 33(8): 081004
    Download Citation