• Advanced Photonics
  • Vol. 5, Issue 4, 046001 (2023)
Karim Achouri*, Ville Tiukuvaara, and Olivier J. F. Martin
Author Affiliations
  • Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne, Nanophotonics and Metrology Laboratory, Lausanne, Switzerland
  • show less
    DOI: 10.1117/1.AP.5.4.046001 Cite this Article Set citation alerts
    Karim Achouri, Ville Tiukuvaara, Olivier J. F. Martin. Spatial symmetries in nonlocal multipolar metasurfaces[J]. Advanced Photonics, 2023, 5(4): 046001 Copy Citation Text show less
    References

    [1] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [2] J. P. Balthasar Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [3] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nature Nanotech., 10, 308-312(2015).

    [4] H. Kwon et al. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett., 121, 173004(2018).

    [5] A. Abdolali et al. Parallel integro-differential equation solving via multi-channel reciprocal bianisotropic metasurface augmented by normal susceptibilities. New J. Phys., 21, 113048(2019).

    [6] M. Schäferling, X. Yin, H. Giessen. Formation of chiral fields in a symmetric environment. Opt. Express, 20, 26326(2012).

    [7] M. Hentschel et al. Chiral plasmonics. Sci. Adv., 3, e1602735(2017).

    [8] T. V. Raziman et al. Conditions for enhancing chiral nanophotonics near achiral nanoparticles. ACS Photonics, 6, 2583-2589(2019).

    [9] J. Kim et al. Chiroptical metasurfaces: principles, classification, and applications. Sensors, 21, 4381(2021).

    [10] Y. Chen et al. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys., 4, 113-124(2021).

    [11] C. Pfeiffer, A. Grbic. Millimeter-wave transmitarrays for wavefront and polarization control. IEEE Trans. Microwave Theory Tech., 61, 4407-4417(2013).

    [12] T. Niemi, A. O. Karilainen, S. A. Tretyakov. Synthesis of polarization transformers. IEEE Trans. Antennas Propag., 61, 3102-3111(2013).

    [13] K. Achouri, M. A. Salem, C. Caloz. General metasurface synthesis based on susceptibility tensors. IEEE Trans. Antennas Propag., 63, 2977-2991(2015).

    [14] A. Epstein, G. V. Eleftheriades. Huygens’ metasurfaces via the equivalence principle: design and applications. J. Opt. Soc. Am. B, 33, A31-A50(2016).

    [15] A. B. Evlyukhin et al. Bianisotropy for light trapping in all-dielectric metasurfaces. Phys. Rev. B, 101, 205415(2020).

    [16] K. Achouri, C. Caloz. Electromagnetic Metasurfaces: Theory and Applications(2021).

    [17] Y. Tang, A. E. Cohen. Optical chirality and its interaction with matter. Phys. Rev. Lett., 104, 163901(2010).

    [18] C. Caloz, A. Sihvola. Electromagnetic chirality, part 1: the microscopic perspective [electromagnetic perspectives]. IEEE Antennas Propag. Mag., 62, 58-71(2020).

    [19] C. Caloz, A. Sihvola. Electromagnetic chirality, part 2: the macroscopic perspective [electromagnetic perspectives]. IEEE Antennas Propag. Mag., 62, 82-98(2020).

    [20] K. Achouri, O. J. F. Martin. Angular scattering properties of metasurfaces. IEEE Trans. Antennas Propag., 68, 432-442(2020).

    [21] K. Achouri, V. Tiukuvaara, O. J. F. Martin. Multipolar modeling of spatially dispersive metasurfaces. IEEE Trans. Antennas Propag., 70, 11946-11956(2022).

    [22] E. B. Graham, R. E. Raab. Light propagation in cubic and other anisotropic crystals. Proc. R. Soc. Lond. A, 430, 593-614(1990).

    [23] R. E. Raab, O. L. De Lange. Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications, 128(2005).

    [24] S. Mühlig et al. Multipole analysis of meta-atoms. Metamaterials, 5, 64-73(2011).

    [25] S. Nanz, C. Rockstuhl. Toroidal Multipole Moments in Classical Electrodynamics(2016).

    [26] R. Alaee, C. Rockstuhl, I. Fernandez-Corbaton. Exact multipolar decompositions with applications in nanophotonics. Advanced Optical Materials, 7, 1800783(2019).

    [27] A. B. Evlyukhin, B. N. Chichkov. Multipole decompositions for directional light scattering. Phys. Rev. B, 100, 125415(2019).

    [28] A. Rahimzadegan et al. A comprehensive multipolar theory for periodic metasurfaces. Advanced Optical Materials, 10, 2102059(2022).

    [29] S. Tretyakov et al. Electromagnetics of Bianisotropic Materials: Theory and Applications(2001).

    [30] V. Agranovich. Crystal Optics with Spatial Dispersion, and Excitons(1984).

    [31] C. Simovski. Composite Media with Weak Spatial Dispersion(2018).

    [32] P. D. Terekhov et al. Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect. Phys. Rev. B, 99, 045424(2019).

    [33] S. Varault et al. Multipolar effects on the dipolar polarizability of magneto-electric antennas. Opt. Express, 21, 16444-16454(2013).

    [34] F. Bernal Arango, T. Coenen, A. F. Koenderink. Underpinning hybridization intuition for complex nanoantennas by magnetoelectric quadrupolar polarizability retrieval. ACS Photonics, 1, 444-453(2014).

    [35] J. Proust et al. Optical monitoring of the magnetoelectric coupling in individual plasmonic satterers. ACS Photonics, 3, 1581-1588(2016).

    [36] L. Hecht, L. D. Barron. Rayleigh and Raman optical activity from chiral surfaces. Chem. Phys. Lett., 225, 525-530(1994).

    [37] A. Potts, D. M. Bagnall, N. I. Zheludev. A new model of geometric chirality for two-dimensional continuous media and planar meta-materials. J. Opt. A: Pure Appl. Opt., 6, 193-203(2004).

    [38] M. Kuwata-Gonokami et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett., 95, 227401(2005).

    [39] B. Bai et al. Optical activity in planar chiral metamaterials: theoretical study. Phys. Rev. A, 76, 023811(2007).

    [40] E. Plum et al. Giant optical gyrotropy due to electromagnetic coupling. Appl. Phys. Lett., 90, 223113(2007).

    [41] O. Arteaga et al. Relation between 2D/3D chirality and the appearance of chiroptical effects in real nanostructures. Opt. Express, 24, 2242-2252(2016).

    [42] A. Papakostas et al. Optical manifestations of planar chirality. Phys. Rev. Lett., 90, 107404(2003).

    [43] E. Plum et al. Metamaterials: optical activity without chirality. Phys. Rev. Lett., 102, 113902(2009).

    [44] E. Plum, V. A. Fedotov, N. I. Zheludev. Extrinsic electromagnetic chirality in metamaterials. J. Opt. A: Pure Appl. Opt., 11, 074009(2009).

    [45] T. Cao et al. Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array. Sci. Rep., 4, 7442(2015).

    [46] H. Okamoto. Local optical activity of nano- to microscale materials and plasmons. J. Mater. Chem. C, 7, 14771-14787(2019).

    [47] R. Singh et al. Terahertz metamaterial with asymmetric transmission. Phys. Rev. B, 80, 153104(2009).

    [48] C. Menzel et al. Asymmetric transmission of linearly polarized light at optical metamaterials. Phys. Rev. Lett., 104, 253902(2010).

    [49] E. Plum, V. A. Fedotov, N. I. Zheludev. Asymmetric transmission: a generic property of two-dimensional periodic patterns. J. Opt., 13, 024006(2011).

    [50] Z. Li, M. Mutlu, E. Ozbay. Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission. J. Opt., 15, 023001(2013).

    [51] L. Arnaut. Chirality in multi-dimensional space with application to electromagnetic characterisation of multi-dimensional chiral and semi-chiral media. J. Electromagn. Waves Appl., 11, 1459-1482(1997).

    [52] V. Dmitriev. Tables of the second rank constitutive tensors for linear homogeneous media described by the point magnetic groups of symmetry. Prog. Electromagn. Res., 28, 43-95(2000).

    [53] W. J. Padilla. Group theoretical description of artificial electromagnetic metamaterials. Opt. Express, 15, 1639-1646(2007).

    [54] J. D. Baena, L. Jelinek, R. Marqués. Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry. Phys. Rev. B, 76, 245115(2007).

    [55] O. Isik, K. P. Esselle. Analysis of spiral metamaterials by use of group theory. Metamaterials, 3, 33-43(2009).

    [56] P. Yu et al. All-dielectric metasurfaces with trapped modes: group-theoretical description. J. Appl. Phys., 125, 143101(2019).

    [57] S.-H. Kim, Y.-H. Lee. Symmetry relations of two-dimensional photonic crystal cavity modes. IEEE J. Quantum Electron., 39, 1081-1085(2003).

    [58] V. Dmitriev. Symmetry properties of 2D magnetic photonic crystals with square lattice. Eur. Phys. J. Appl. Phys., 32, 159-165(2005).

    [59] R. R. Birss. Macroscopic symmetry in space-time. Rep. Prog. Phys., 26, 307-360(1963).

    [60] L. D. Barron. True and false chirality and absolute asymmetric synthesis. J. Am. Chem. Soc., 108, 5539-5542(1986).

    [61] V. A. Dmitriev. Space-time reversal symmetry properties of electromagnetic green’s tensors for complex and bianisotropic media. Prog. Electromagn. Res., 48, 145-184(2004).

    [62] S. I. Maslovski, D. K. Morits, S. A. Tretyakov. Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles. J. Opt. A: Pure Appl. Opt., 11, 074004(2009).

    [63] V. Dmitriev. Permeability tensor versus permittivity one in theory of nonreciprocal optical components. Photonics Nanostruct. Fundam. Appl., 11, 203-209(2013).

    [64] K. Achouri, O. J. F. Martin. Extension of Lorentz reciprocity and Poynting theorems for spatially dispersive media with quadrupolar responses. Phys. Rev. B, 104, 165426(2021).

    [65] V. Dmitriev et al. Symmetry analysis of trimer-based all-dielectric metasurfaces with toroidal dipole modes. J. Phys. D: Appl. Phys., 54, 115107(2021).

    [66] M. Poleva et al. Multipolar theory of bianisotropic response of meta-atoms. Phys. Rev. B, 107, L041304(2023).

    [67] Z. Sadrieva et al. Multipolar origin of bound states in the continuum. Phys. Rev. B, 100, 115303(2019).

    [68] A. C. Overvig et al. Selection rules for quasibound states in the continuum. Phys. Rev. B, 102, 035434(2020).

    [69] S. S. Kruk et al. Asymmetric parametric generation of images with nonlinear dielectric metasurfaces. Nat. Photonics, 16, 561-565(2022).

    [70] L. Li. Symmetries of cross-polarization diffraction coefficients of gratings. J. Opt. Soc. Am. A, 17, 881-887(2000).

    [71] M. Kahnert. Irreducible representations of finite groups in the T-matrix formulation of the electromagnetic scattering problem. J. Opt. Soc. Am. A, 22, 1187-1199(2005).

    [72] V. Dmitriev. Symmetry properties of electromagnetic planar arrays: long-wave approximation and normal incidence. Metamaterials, 5, 141-148(2011).

    [73] V. Dmitriev. Symmetry properties of electromagnetic planar arrays in transfer matrix description. IEEE Trans. Antennas Propag., 61, 185-194(2013).

    [74] O. Arteaga. Useful Mueller matrix symmetries for ellipsometry. Thin Solid Films, 571, 584-588(2014).

    [75] S. S. Kruk et al. Polarization properties of optical metasurfaces of different symmetries. Phys. Rev. B, 91, 195401(2015).

    [76] S. Kruk, I. Brener, Y. Kivshar et al. 5 - Tailoring transmission and reflection with metasurfaces. Dielectric Metamaterials, 145-174(2020).

    [77] K. Achouri, O. J. F. Martin. Fundamental properties and classification of polarization converting bianisotropic metasurfaces. IEEE Trans. Antennas Propag., 69, 5653-5663(2021).

    [78] Spatial symmetries in multipolar metasurfaces.

    [79] W. Voigt. Lehrbuch der kristallphysik (mit ausschluss der kristalloptik)(1910).

    [80] E. J. Post. Magnetic symmetry, improper symmetry, and Neumann’s principle. Found. Phys., 8, 277-294(1978).

    [81] M. J. T. Oliveira et al. On the use of Neumann’s principle for the calculation of the polarizability tensor of nanostructures. J Nanosci. Nanotechnol., 8, 3392-3398(2008).

    [82] S. Tretyakov. Analytical Modeling in Applied Electromagnetics(2003).

    [83] J. A. Kong. Electromagnetic Wave Theory(1986).

    [84] W. J. Thompson. Angular Momentum: An Illustrated Guide to Rotational Symmetries for Physical Systems(1994).

    [85] . Fundamentals of Photonics(2019).

    [86] C. Menzel, C. Rockstuhl, F. Lederer. Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A, 82, 053811(2010).

    [87] X. Wang et al. Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption. Phys. Rev. Lett., 121, 256802(2018).

    [88] R. Alaee, C. Rockstuhl, I. Fernandez-Corbaton. An electromagnetic multipole expansion beyond the long-wavelength approximation. Opt. Commun., 407, 17-21(2018).

    [89] A. Householder. The Theory of Matrices in Numerical Analysis(1964).

    Karim Achouri, Ville Tiukuvaara, Olivier J. F. Martin. Spatial symmetries in nonlocal multipolar metasurfaces[J]. Advanced Photonics, 2023, 5(4): 046001
    Download Citation