• Photonics Research
  • Vol. 6, Issue 12, 1171 (2018)
Hua-Jun Chen*
Author Affiliations
  • School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan 232001, China (chenphysics@126.com)
  • show less
    DOI: 10.1364/PRJ.6.001171 Cite this Article Set citation alerts
    Hua-Jun Chen. Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity[J]. Photonics Research, 2018, 6(12): 1171 Copy Citation Text show less
    References

    [1] H. Mabuchi, A. C. Doherty. Cavity quantum electrodynamics: coherence in context. Science, 298, 1372-1377(2002).

    [2] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [3] C. Monroe. Quantum information processing with atoms and photons. Nature, 416, 238-246(2002).

    [4] C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, S. Haroche. Progressive field-state collapse and quantum non-demolition photon counting. Nature, 448, 889-893(2007).

    [5] J. L. O’Brien, A. Furusawa, J. Vuckovic. Photonic quantum technologies. Nat. Photonics, 3, 687-695(2009).

    [6] Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, Q. Gong. Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: photon transportation benefitting from Rayleigh scattering. Phys. Rev. A, 84, 011805(2011).

    [7] A. Majumdar, M. Bajcsy, J. Vuckovic. Design and analysis of photonic crystal coupled cavity arrays for quantum simulation. Phys. Rev. A, 85, 041801(2012).

    [8] J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 432, 197-200(2004).

    [9] E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, J. Bloch. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett., 95, 067401(2005).

    [10] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432, 200-203(2004).

    [11] M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa. Laser oscillation in a strongly coupled single quantum-dot-nanocavity system. Nat. Phys., 6, 279-283(2010).

    [12] S. Noda, M. Fujita, T. Asano. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics, 1, 449-458(2007).

    [13] W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett., 96, 117401(2006).

    [14] R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, G. Malpuech. Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity. Phys. Rev. Lett., 100, 240404(2008).

    [15] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, A. Imamoglu. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 445, 896-899(2007).

    [16] T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoglu. Ultrafast all-optical switching by single photons. Nat. Photonics, 6, 605-609(2012).

    [17] R. Bose, D. Sridharan, H. Kim, G. S. Solomon, E. Waks. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett., 108, 227402(2012).

    [18] A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoglu. Strongly correlated photons on a chip. Nat. Photonics, 6, 93-96(2012).

    [19] H. Kim, R. Bose, T. C. Shen, G. S. Solomon, E. Waks. A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photonics, 7, 373-377(2013).

    [20] A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, A. Imamoglu. Deterministic coupling of single quantum dots to single nanocavity modes. Science, 308, 1158-1161(2005).

    [21] D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, J. Vuckovic. Controlling cavity reflectivity with a single quantum dot. Nature, 450, 857-861(2007).

    [22] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vuckovic. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys., 4, 859-863(2008).

    [23] Y. C. Liu, X. Luan, H. K. Li, Q. Gong, C. W. Wong, Y. F. Xiao. Coherent polariton dynamics in coupled highly dissipative cavities. Phys. Rev. Lett., 112, 213602(2014).

    [24] E. del Valle, F. P. Laussy. Mollow triplet under incoherent pumping. Phys. Rev. Lett., 105, 233601(2010).

    [25] X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, L. J. Sham. Coherent optical spectroscopy of a strongly driven quantum dot. Science, 317, 929-932(2007).

    [26] Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, Q. Gong. Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys. Rev. A, 83, 019902(2011).

    [27] H. Toida, T. Nakajima, S. Komiyama. Vacuum Rabi splitting in a semiconductor circuit QED system. Phys. Rev. Lett., 110, 066802(2013).

    [28] J. Q. Liao, Q. Q. Wu, F. Nori. Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A, 89, 014302(2014).

    [29] B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [30] H. Jing, S. K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, F. Nori. PT-symmetric phonon laser. Phys. Rev. Lett., 113, 053604(2014).

    [31] A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature, 418, 612-614(2002).

    [32] R. W. Boyd. Nonlinear Optics(2008).

    [33] D. F. Walls, G. J. Milburn. Quantum Optics, 245(1994).

    [34] L. M. Duan, H. J. Kimble. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett., 92, 127902(2004).

    [35] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics, 8, 524-529(2014).

    [36] E. M. Purcell, H. C. Torrey, R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev., 69, 37-38(1946).

    [37] J. J. Li, K. D. Zhu. A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity. Nanotechnology, 22, 055202(2011).

    [38] Y. C. Yu, J. F. Liu, X. L. Zhuo, G. Chen, C. J. Jin, X. H. Wang. Vacuum Rabi splitting in a coupled system of single quantum dot and photonic crystal cavity: effect of local and propagation Green’s functions. Opt. Express, 21, 23486-23497(2013).

    [39] S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, J. J. Finley. Coexistence of weak and strong coupling with a quantum dot in a photonic molecule(2018).

    Hua-Jun Chen. Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity[J]. Photonics Research, 2018, 6(12): 1171
    Download Citation