• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 5, 1209 (2022)
LI Mingwei*, DU Mengdie, YANG Fang, DONG Wei, and YANG Shaobin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    LI Mingwei, DU Mengdie, YANG Fang, DONG Wei, YANG Shaobin. Effect of Surfactant on Morphology and Supercapacitor Properties of NiMn2O4 Electrode Material[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1209 Copy Citation Text show less
    References

    [1] SARAF M, RAJAK R, MOBIN S M. A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors[J]. J Mater Chem A, 2016, 4 (42): 16432-16445.

    [2] IMTIAZ M, ZHU C, LI Y, et al. Functionalized bioinspired porous carbon with graphene sheets as anode materials for lithium-ion batteries[J]. J Alloy Comp, 2017, 724: 296-305.

    [3] IMTIAZ M, CHEN Z, ZHU C, et al. In situ growth of β-FeOOH on hierarchically porous carbon as anodes for high-performance lithium-ion batteries[J]. Electrochim Acta, 2018, 283: 401-409.

    [4] JIANG W, YU D, ZHANG Q, et al. Ternary hybrids of amorphous nickel hydroxide-carbon nanotube-conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life[J]. Adv Func Mater, 2015, 25(7): 1063-1073.

    [5] FENG L, ZHU Y, DING H, et al. Recent progress in nickel based materials for high performance pseudocapacitor electrodes[J]. J Power Sources, 2014, 267: 430-444.

    [6] RAY A, ROY A, SAHA S, et al. Electrochemical energy storage properties of Ni-Mn-oxide electrodes for advance asymmetric supercapacitor application[J]. Langmuir, 2019, 35(25): 8257-8267.

    [7] HE P, HUANG Q, HUANG B, et al. Controllable synthesis of Ni-Co-Mn multi-component metal oxides with various morphologies for high-performance flexible supercapacitors[J]. RSC adv, 2017, 7(39): 24353-24358.

    [8] SUN Y, DU X, ZHANG J, et al. Microwave-assisted preparation and improvement mechanism of carbon nanotube@NiMn2O4 core-shell nanocomposite for high performance asymmetric supercapacitors[J]. J Power Sources, 2020, 473: 228609.

    [9] SANDHIYA M, SUBRAMANI K, SATHISH M. Augmenting the electrochemical performance of NiMn2O4 by doping of transition metal ions and compositing with rGO[J]. J Colloid Interf Sci, 2021, 598: 409-418.

    [11] ZHANG W, QUAN B, LEE C, et al. One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material[J]. ACS Appl Mater Inter, 2015, 7(4): 2404-2414.

    [12] LIU S, JUN S C. Hierarchical manganese cobalt sulfide core-shell nanostructures for high-performance asymmetric supercapacitors[J]. J Power Sources, 2017, 342: 629-637.

    [13] XU Y, WANG L, CAO P, et al. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors[J]. J Power Sources, 2016, 306: 742-752.

    [14] YAO J, GONG Y, YANG S, et al. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries[J]. ACS Appl Mater Inter, 2014, 6(22): 20414-20422.

    [15] LI L, HU H, DING S. Facile synthesis of ultrathin and perpendicular NiMn2O4 nanosheets on reduced graphene oxide as advanced electrodes for supercapacitors[J]. Inorganic Chem Front, 2018, 5(7): 1714-1720.

    [16] LU Y, YAN H, ZHANG D, et al. Hybrid nanonet/nanoflake NiCo2O4 electrodes with an ultrahigh surface area for supercapacitors[J]. J Solid State Electrochem, 2014, 18(11): 3143-3152.

    LI Mingwei, DU Mengdie, YANG Fang, DONG Wei, YANG Shaobin. Effect of Surfactant on Morphology and Supercapacitor Properties of NiMn2O4 Electrode Material[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1209
    Download Citation