[1] H KANNO, H MIKAMI, K GODA. High-speed single-pixel imaging by frequency-time-division multiplexing. Optics Letters, 45, 2339-2342(2020).
[2] Z QIU, Z ZHANG, J ZHONG. Comprehensive comparison of single-pixel imaging methods. Optics and Lasers in Engineering, 134, 106301(2020).
[3] W YANG, K YIN, D SHI et al. Single pixel imaging via sparse projection angle sampling. Optics Communications, 499, 127284(2021).
[4] X YANG, P JIANG, M JIANG et al. High imaging quality of Fourier single pixel imaging based on generative adversarial networks at low sampling rate. Optics and Lasers in Engineering, 140, 106533(2021).
[5] E CANDÈS, J ROMBERG. Sparsity and incoherence in compressive sampling. Inverse Problems, 23, 969-985(2007).
[6] M F DUARTE, M A DAVENPORT, D TAKHAR et al. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 25, 83-91(2008).
[7] T B PITTMAN, Y H SHIH, D V STREKALOV et al. Optical imaging by means of two-photon quantum entanglement. Physical Review A, Atomic, Molecular, and Optical Physics, 52, R3429-R3432(1995).
[8] R S BENNINK, S J BENTLEY, R W BOYD. “Two-photon” coincidence imaging with a classical source. Physical Review Letters, 89, 113601(2002).
[9] J H SHAPIRO. Computational ghost imaging. Physical Review A, 78(2008).
[10] Y QI, L LI, G ZHOU et al. A single-pixel hyperspectral imager using two-stage Hadamard encoding. Optics Communications, 470, 125813(2020).
[11] Y W WANG, J L SUO, J T FAN et al. Hyperspectral computational ghost imaging via temporal multiplexing. IEEE Photonics Technology Letters, 28, 288-291(2016).
[12] J R WU, E R LI, X SHEN et al. Experimental results of the balloon-borne spectral camera based on ghost imaging via sparsity constraints. IEEE Access, 6, 68740-68748(2018).
[13] H ZHANG, X MA, G R ARCE. Compressive spectral imaging approach using adaptive coded apertures. Applied Optics, 59, 1924-1938(2020).
[14] 14高泽东, 高洪兴, 朱院院, 等. 快照式光谱成像技术综述[J]. 光学 精密工程, 2020, 28(6): 1323-1343. doi: 10.3788/ope.20202806.1323GAOZ D, GAOH X, ZHUY Y, et al. Review of snapshot spectral imaging technologies[J]. Opt. Precision Eng., 2020, 28(6): 1323-1343. (in Chinese). doi: 10.3788/ope.20202806.1323
[15] S L JIN, W W HUI, Y L WANG et al. Hyperspectral imaging using the single-pixel Fourier transform technique. Scientific Reports, 7, 45209(2017).
[16] Z W LI, J L SUO, X M HU et al. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation. Scientific Reports, 7, 41435(2017).
[17] K MONAKHOVA, K YANNY, N AGGARWAL et al. Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array. Optica, 7, 1298(2020).
[18] Z B ZHANG, S J LIU, J Z PENG et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements. Optica, 5, 315(2018).
[19] 19赵梓栋, 杨照华, 李高亮. 基于测量基优化的低采样率单像素成像[J]. 光学 精密工程, 2021, 29(5): 1008-1013. doi: 10.37188/OPE.20212905.1008ZHAOZ D, YANGZ H, LIG L. Sub-Nyquist single-pixel imaging by optimizing sampling basis[J]. Opt. Precision Eng., 2021, 29(5): 1008-1013. (in Chinese). doi: 10.37188/OPE.20212905.1008
[20] 20王美钦, 王忠厚, 白加光. 宽谱段光学系统消二级光谱的设计[J]. 应用光学, 2010, 31(3): 360-364. doi: 10.3969/j.issn.1002-2082.2010.03.004WANGM Q, WANGZH H, BAIJ G. Removing secondary spectrum in wide spectrum optical system[J]. Journal of Applied Optics, 2010, 31(3): 360-364. (in Chinese). doi: 10.3969/j.issn.1002-2082.2010.03.004
[21] 21王之江. 光学设计理论基础[M]. 北京:科学出版社, 1965.WANGZH J. Theoretical Basis of Optical Design[M]. Beijing: Science Press, 1965. (in Chinese).
[23] F FERRI, D MAGATTI, L A LUGIATO et al. Differential Ghost Imaging. Physical Review Letters, 104, 253603(2010).