• Photonics Research
  • Vol. 11, Issue 3, 456 (2023)
Enduo Gao1, Rong Jin2, Zhenchu Fu2, Guangtao Cao3、6, Yan Deng4, Jian Chen2, Guanhai Li2、5、*, Xiaoshuang Chen2, and Hongjian Li1、7
Author Affiliations
  • 1School of Physics and Electronics, Central South University, Changsha 410083, China
  • 2State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 3School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China
  • 4School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
  • 5Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 6e-mail: caoguangtao456@126.com
  • 7e-mail: lihj398@126.com
  • show less
    DOI: 10.1364/PRJ.481020 Cite this Article Set citation alerts
    Enduo Gao, Rong Jin, Zhenchu Fu, Guangtao Cao, Yan Deng, Jian Chen, Guanhai Li, Xiaoshuang Chen, Hongjian Li. Ultrawide dynamic modulation of perfect absorption with a Friedrich–Wintgen BIC[J]. Photonics Research, 2023, 11(3): 456 Copy Citation Text show less
    References

    [1] H. T. Chen, R. Kersting, G. C. Cho. Terahertz imaging with nanometer resolution. Appl. Phys. Lett., 83, 3009-3011(2003).

    [2] S. Pereira, S. LaRochelle. Field profiles and spectral properties of chirped Bragg grating Fabry-Perot interferometers. Opt. Express, 13, 1906-1915(2005).

    [3] H.-J. Song, T. Nagatsuma. Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol., 1, 256-263(2011).

    [4] F. Chen, H. Zhang, L. Sun, J. Li, C. Yu. Double-band perfect absorber based on the dielectric grating and Fabry–Perot cavity. Appl. Phys. A, 125, 792(2019).

    [5] C. Fu, B. Wang, X. Zhu, Z. Xiong, Y. Huang. Narrowband absorbers based on multi-ridge gratings. Optik, 257, 168839(2022).

    [6] Z. Yi, J. Li, J. Lin, F. Qin, X. Chen, W. Yao, Z. Liu, S. Cheng, P. Wu, H. Li. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array. Nanoscale, 12, 23077-23083(2020).

    [7] C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, L. Zhou. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys. Rev. Lett., 115, 235503(2015).

    [8] E. Gao, Z. Liu, H. Li, H. Xu, Z. Zhang, X. Luo, C. Xiong, C. Liu, B. Zhang, F. Zhou. Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial. Opt. Express, 27, 13884-13894(2021).

    [9] P. Sun, C. You, A. Mahigir, T. Liu, F. Xia, W. Kong, G. Veronis, J. P. Dowling, L. Dong, M. Yun. Graphene-based dual-band independently tunable infrared absorber. Nanoscale, 10, 15564-15570(2018).

    [10] Q. Shangguan, H. Chen, H. Yang, S. Liang, Y. Zhang, S. Cheng, W. Yang, Z. Yi, Y. Luo, P. Wu. A ‘belfry-typed’ narrow-band tunable perfect absorber based on graphene and the application potential research. Diam. Relat. Mater., 125, 108973(2022).

    [11] P. Wu, X. Zeng, N. Su, M. Chen, Y. Zeng, Y. Yu. A graphene perfect absorber with tunable, dual band, high sensitivity characteristics. Diam. Relat. Mater., 125, 109002(2022).

    [12] H. Xu, C. X. Xiong, Z. Q. Chen, M. F. Zheng, M. Z. Zhao, B. H. Zhang, H. J. Li. Dynamic plasmon-induced transparency modulator and excellent absorber-based terahertz planar graphene metamaterial. J. Opt. Soc. Am. B, 35, 1463-1468(2018).

    [13] A. B. Asl, D. Pourkhalil, A. Rostami, H. Mirtaghioglu. A perfect electrically tunable graphene-based metamaterial absorber. J. Comput. Electron., 20, 864-872(2021).

    [14] Y. Qi, C. Liu, B. Hu, X. Deng, X. Wang. Tunable plasmonic absorber in THz-band range based on graphene arrow-shaped metamaterial. Results Phys., 23, 104044(2021).

    [15] W. Liu, Z. Song. Terahertz absorption modulator with largely tunable bandwidth and intensity. Carbon, 174, 617-624(2021).

    [16] Z. Chen, H. Chen, H. Jile, D. Xu, Z. Yi, Y. Lei, X. Chen, Z. Zhou, S. Cai, G. Li. Multi-band multi-tunable perfect plasmon absorber based on L-shaped and double-elliptical graphene stacks. Diam. Relat. Mater., 115, 108374(2021).

    [17] J. Gong, X. Shi, Y. Lu, F. Hu, R. Zong, G. Li. Dynamically tunable triple-band terahertz perfect absorber based on graphene metasurface. Superlattices Microstruct., 150, 106797(2021).

    [18] T. Chen, W. Jiang, X. Yin. Dual-band ultrasensitive terahertz sensor based on tunable graphene metamaterial absorber. Superlattices Microstruct., 154, 106898(2021).

    [19] Y. Yuan, Y. Qi, B. Zhang, J. Ding, W. Liu, H. Chen, X. Wang. A polarization-insensitive, wide-angle dual-band tunable graphene metamaterial perfect absorber with T-shaped strips and square ring. Phys. Scripta, 97, 025507(2022).

    [20] J. Guo. A polarization-insensitive dual-band terahertz absorber using triangle graphene metamaterial structure. Microw. Opt. Technol. Lett., 64, 1958-1964(2022).

    [21] S. Yin, Z. Zhu, X. Gao, Q. Wang, J. Yuan, Y. Liu, L. Jiang. Terahertz nonreciprocal and functionality-switchable devices based on dielectric multilayers integrated with graphene and VO2. Opt. Lett., 47, 678-681(2022).

    [22] X. Zhu, B. Wang. Graphene-based angle insensitive and tunable single band and dual band metamaterial terahertz absorber. Phys. Status Solidi B, 259, 2100573(2021).

    [23] P. Jordan, J. V. Neumann, E. P. Wigner. On an algebraic generalization of the quantum mechanical formalism. Ann. Math., 35, 29-64(1934).

    [24] F. Monticone, A. Alù. Bound states within the radiation continuum in diffraction gratings and the role of leaky modes. New J. Phys., 19, 093011(2017).

    [25] N. A. Cumpsty, D. S. Whitehead. The excitation of acoustic resonances by vortex shedding. J. Sound Vib., 18, 353-369(1971).

    [26] A. G. Every, A. A. Maznev. Fano line shapes of leaky surface acoustic waves extending from supersonic surface wave points. Wave Motion, 79, 1-9(2018).

    [27] L. Ni, Z. Wang, C. Peng, Z. Li. Tunable optical bound states in the continuum beyond in-plane symmetry protection. Phys. Rev. B, 94, 245148(2016).

    [28] Y. Kivshar. Resonant tunneling and bound states in the continuum. Low Temp. Phys., 48, 389-395(2022).

    [29] P. Vaity, H. Gupta, A. Kala, S. D. Gupta, Y. S. Kivshar, V. R. Tuz, V. G. Achanta. Polarization-independent quasibound states in the continuum. Adv. Photon. Res., 3, 2100144(2021).

    [30] G. Zograf, K. Koshelev, A. Zalogina, V. Korolev, R. Hollinger, D. Y. Choi, M. Zuerch, C. Spielmann, B. Luther-Davies, D. Kartashov, S. V. Makarov, S. S. Kruk, Y. Kivshar. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum. ACS Photon., 9, 567-574(2022).

    [31] M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, Y. S. Kivshar. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett., 119, 243901(2017).

    [32] H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, A. F. Koenderink. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photonics, 12, 397-401(2018).

    [33] E. Gao, H. Li, Z. Liu, C. Xiong, C. Liu, B. Ruan, M. Li, B. Zhang. Investigation of bound states in the continuum in dual-band perfect absorbers. Opt. Express, 30, 14817-14827(2022).

    [34] S. I. Azzam, V. M. Shalaev, A. Boltasseva, A. V. Kildishev. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett., 121, 253901(2018).

    [35] L. Cong, R. Singh. Symmetry-protected dual bound states in the continuum in metamaterials. Adv. Opt. Mater., 7, 1900383(2019).

    [36] X. Wang, S. Li, C. Zhou. Polarization-independent toroidal dipole resonances driven by symmetry-protected BIC in ultraviolet region. Opt. Express, 28, 11983-11989(2020).

    [37] C. Ma, Q. Lin, L. Wang, K. Huang. Highly tunable dual bound states in the continuum in bulk Dirac semimetal metasurface. Appl. Phys. Express, 14, 042002(2021).

    [38] Z. Cheng, X. Luo, L. Xu, X. Zhai, L. Wang. Complete optical absorption in hybrid halide perovskites based on critical coupling in the communication band. Opt. Express, 28, 14151-14161(2020).

    [39] J. R. Piper, S. Fan. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photon., 1, 347-353(2014).

    [40] C. Liu, H. Li, H. Xu, M. Zhao, C. Xiong, M. Li, B. Ruan, B. Zhang, K. Wu. Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials. New J. Phys., 22, 073049(2020).

    [41] M. Li, H. Li, H. Xu, C. Xiong, M. Zhao, C. Liu, B. Ruan, B. Zhang, K. Wu. Dual-frequency on-off modulation and slow light analysis based on dual plasmon-induced transparency in terahertz patterned graphene metamaterial. New J. Phys., 22, 103030(2020).

    [42] B. Ruan, C. Liu, C. Xiong, M. Li, B. Zhang, E. Gao, K. Wu, H. Li. Absorption and self-calibrated sensing based on tunable Fano resonance in a grating coupled graphene/waveguide hybrid structure. J. Lightwave Techn., 39, 5657-5661(2021).

    [43] H. Xu, X. Wang, Z. Chen, X. Li, L. He, Y. Dong, G. Nie, Z. He. Optical tunable multifunctional slow light device based on double monolayer graphene grating-like metamaterial. New J. Phys., 23, 123025(2021).

    [44] R. Zhou, J. Peng, S. Yang, D. Liu, Y. Xiao, G. Cao. Lifetime and nonlinearity of modulated surface plasmon for black phosphorus sensing application. Nanoscale, 10, 18878-18891(2018).

    [45] Y. Yi, Z. Yi, F. Zhao, H. Yang, M. Li, B. Wu, E. Gao, Y. Yi, M. Long. Independently tunable triple-band infrared perfect absorber based on the square loops-shaped nano-silver structure. Phys. E, 139, 115122(2022).

    [46] X. Zhang, F. Zhou, Z. Liu, Z. Zhang, Y. Qin, S. Zhuo, X. Luo, E. Gao, H. Li. Quadruple plasmon-induced transparency of polarization desensitization caused by the Boltzmann function. Opt. Express, 29, 29387-29401(2021).

    [47] H. Chen, Z. Chen, H. Yang, L. Wen, Z. Yi, Z. Zhou, B. Dai, J. Zhang, X. Wu, P. Wu. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Adv., 12, 7821-7829(2022).

    [48] R. Cheng, Y. Zhou, J. Liu, S. Hu, H. Liu, J. Pan, W. Huang, X. He, B. Liang, L. Zhang. Independently tunable multi-band terahertz absorber based on graphene sheet and nanoribbons. Opt. Express, 30, 3893-3902(2022).

    [49] C. Xiong, H. Xu, M. Zhao, B. Zhang, C. Liu, B. Zeng, K. Wu, B. Ruan, M. Li, H. Li. Triple plasmon-induced transparency and outstanding slow-light in quasi-continuous monolayer graphene structure. Sci. China Phys. Mech., 64, 224211(2020).

    [50] H. Xu, Z. He, Z. Chen, G. Nie, H. Li. Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system. Opt. Express, 28, 25767-25777(2020).

    [51] E. Gao, H. Li, Z. Liu, C. Xiong, C. Liu, B. Ruan, M. Li, B. Zhang. Terahertz multifunction switch and optical storage based on triple plasmon-induced transparency on a single-layer patterned graphene metasurface. Opt. Express, 28, 40013-40023(2020).

    [52] Z. Liu, X. Zhang, F. Zhou, X. Luo, Z. Zhang, Y. Qin, S. Zhuo, E. Gao, H. Li, Z. Yi. Triple plasmon-induced transparency and optical switch desensitized to polarized light based on a mono-layer metamaterial. Opt. Express, 29, 13949-13959(2021).

    [53] S. Balci, O. Balci, N. Kakenov, F. B. Atar, C. Kocabas. Dynamic tuning of plasmon resonance in the visible using grapheme. Opt. Lett., 41, 1241-1244(2016).

    [54] Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, C. Sirtori. Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies. Phys. Rev. Lett., 102, 186402(2009).

    [55] S. X. Xia, X. Zhai, L. L. Wang, S. C. Wen. Plasmonically induced transparency in double-layered graphene nanoribbons. Photon. Res., 6, 692-702(2018).

    [56] W. Gao, J. Shu, C. Qiu, Q. Xu. Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano, 6, 7806-7813(2012).

    [57] H. Friedrich, D. Wintgen. Interfering resonances and bound states in the continuum. Phys. Rev. A, 32, 3231-3242(1985).

    [58] A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen. Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys. Rev. Lett., 91, 183901(2003).

    [59] S. G. Tikhodeev, N. A. Gippius, A. Christ, T. Zentgraf, J. Kuhl, H. Giessen. Waveguide-plasmon polaritons in photonic crystal slabs with metal nanowires. Phys. Status Solidi C, 2, 795-800(2005).

    [60] J. Hu, E. Yao, W. Xie, W. Liu, D. Li, Y. Lu, Q. Zhang. Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure. Opt. Express, 27, 18642-18652(2019).

    [61] S. G. Lee, S. H. Kim, C. S. Kee. Bound states in the continuum (BIC) accompanied by avoided crossings in leaky-mode photonic lattices. Nanophotonics, 9, 4373-4380(2020).

    [62] D. K. Efetov, P. Kim. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett., 105, 256805(2010).

    [63] T. Sang, J. Gao, L. Wang, H. Qi, X. Yin, Y. Wang. Numerical study of angle-insensitive and tunable dual-band THz absorber using periodic cross-shaped graphene arrays. Materials, 12, 2063(2019).

    [64] T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, J. Feldmann. Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett., 80, 4249-4252(1998).

    Enduo Gao, Rong Jin, Zhenchu Fu, Guangtao Cao, Yan Deng, Jian Chen, Guanhai Li, Xiaoshuang Chen, Hongjian Li. Ultrawide dynamic modulation of perfect absorption with a Friedrich–Wintgen BIC[J]. Photonics Research, 2023, 11(3): 456
    Download Citation