• Advanced Photonics
  • Vol. 1, Issue 4, 046005 (2019)
Daniele Cozzolino1, Emanuele Polino2, Mauro Valeri2, Gonzalo Carvacho2, Davide Bacco1, Nicolò Spagnolo2, Leif K. Oxenløwe1, and Fabio Sciarrino2、3、*
Author Affiliations
  • 1Technical University of Denmark, CoE SPOC, Department of Photonics Engineering, Lyngby, Denmark
  • 2Sapienza Università di Roma, Dipartimento di Fisica, Roma, Italy
  • 3Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Roma, Italy
  • show less
    DOI: 10.1117/1.AP.1.4.046005 Cite this Article Set citation alerts
    Daniele Cozzolino, Emanuele Polino, Mauro Valeri, Gonzalo Carvacho, Davide Bacco, Nicolò Spagnolo, Leif K. Oxenløwe, Fabio Sciarrino. Air-core fiber distribution of hybrid vector vortex-polarization entangled states[J]. Advanced Photonics, 2019, 1(4): 046005 Copy Citation Text show less
    References

    [1] N. Gisin, R. Thew. Quantum communication. Nat. Photonics, 1, 165-171(2007).

    [2] J.-W. Pan et al. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett., 80, 3891-3894(1998).

    [3] X.-S. Ma et al. Experimental delayed-choice entanglement swapping. Nat. Phys., 8, 479-484(2012).

    [4] M. M. Weston et al. Heralded quantum steering over a high-loss channel. Sci. Adv., 4, e1701230(2018).

    [5] Q.-C. Sun et al. Entanglement swapping with independent sources over an optical-fiber network. Phys. Rev. A, 95, 032306(2017).

    [6] J. T. Barreiro, T.-C. Wei, P. G. Kwiat. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys., 4, 282-286(2008).

    [7] B. P. Williams, R. J. Sadlier, T. S. Humble. Superdense coding over optical fiber links with complete Bell-state measurements. Phys. Rev. Lett., 118, 050501(2017).

    [8] C. Schuck et al. Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett., 96, 190501(2006).

    [9] M. Barbieri et al. Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A, 75, 042317(2007).

    [10] D. Bouwmeester et al. Experimental quantum teleportation. Nature, 390, 575-579(1997).

    [11] D. Boschi et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett., 80, 1121-1125(1998).

    [12] E. Lombardi et al. Teleportation of a vacuum-one-photon qubit. Phys. Rev. Lett., 88, 070402(2002).

    [13] X.-L. Wang et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516-519(2015).

    [14] I. Marcikic et al. Long-distance teleportation of qubits at telecommunication wavelengths. Nature, 421, 509-513(2003).

    [15] L.-M. Duan et al. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413-418(2001).

    [16] X.-S. Ma et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 489, 269-273(2012).

    [17] A. Einstein, B. Podolsky, N. Rosen. Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev., 47, 777-780(1935).

    [18] J. S. Bell. On the Einstein–Podolsky–Rosen paradox. Phys. Phys. Fiz., 1, 195(1964).

    [19] R. Horodecki et al. Quantum entanglement. Rev. Mod. Phys., 81, 865-942(2009).

    [20] M. A. Nielsen, I. L. Chuang. Quantum Computation and Quantum Information(2000).

    [21] N. Brunner et al. Bell nonlocality. Rev. Mod. Phys., 86, 419-478(2014).

    [22] G. Adesso, T. R. Bromley, M. Cianciaruso. Measures and applications of quantum correlations. J. Phys. A: Math. Theor., 49, 473001(2016).

    [23] J. Yin et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 356, 1140-1144(2017).

    [24] R. Ursin et al. Entanglement-based quantum communication over 144 km. Nat. Phys., 3, 481-486(2007).

    [25] T. Honjo et al. Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Express, 16, 19118-19126(2008).

    [26] T. Inagaki et al. Entanglement distribution over 300 km of fiber. Opt. Express, 21, 23241-23249(2013).

    [27] H. Hübel et al. High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. Opt. Express, 15, 7853-7862(2007).

    [28] A. Poppe et al. Practical quantum key distribution with polarization entangled photons. Opt. Express, 12, 3865-3871(2004).

    [29] F. Flamini, N. Spagnolo, F. Sciarrino. Photonic quantum information processing: a review. Rep. Progr. Phys., 82, 016001(2019).

    [30] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [31] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305-310(2007).

    [32] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [33] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [34] A. E. Willner et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66-106(2015).

    [35] K. Ingerslev et al. 12 mode, wdm, mimo-free orbital angular momentum transmission. Opt. Express, 26, 20225-20232(2018).

    [36] M. Malik et al. Multi-photon entanglement in high dimensions. Nat. Photonics, 10, 248-252(2016).

    [37] J. Bavaresco et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat. Phys., 14, 1032-1037(2018).

    [38] M. Erhard et al. Twisted photons: new quantum perspectives in high dimensions. Light: Sci. Appl., 7, -17146(2018).

    [39] T. Giordani et al. Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett., 122, 020503(2019).

    [40] A. C. Dada et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys., 7, 677-680(2011).

    [41] M. Krenn et al. Communication with spatially modulated light through turbulent air across Vienna. New J. Phys., 16, 113028(2014).

    [42] F. Bouchard et al. Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express, 26, 22563-22573(2018).

    [43] Y. Chen et al. Underwater transmission of high-dimensional twisted photons over 55 meters(2019).

    [44] C. Brunet et al. Design, fabrication and validation of an OAM fiber supporting 36 states. Opt. Express, 22, 26117-26127(2014).

    [45] S. Li, J. Wang. Supermode fiber for orbital angular momentum (OAM) transmission. Opt. Express, 23, 18736-18745(2015).

    [46] B. Ndagano et al. Fiber propagation of vector modes. Opt. Express, 23, 17330-17336(2015).

    [47] D. Cozzolino et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys. Rev. Appl., 11, 064058(2019).

    [48] A. Sit et al. Quantum cryptography with structured photons through a vortex fiber. Opt. Lett., 43, 4108-4111(2018).

    [49] P. Gregg, P. Kristensen, S. Ramachandran. Conservation of orbital angular momentum in air-core optical fibers. Optica, 2, 267-270(2015).

    [50] M. R. Dennis, K. O’Holleran, M. J. Padgett. Singular optics: optical vortices and polarization singularities. Progr. Opt., 53, 293-364(2009).

    [51] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 1, 1-57(2009).

    [52] F. Cardano et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt., 51, C1-C6(2012).

    [53] G. Milione et al. Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 107, 053601(2011).

    [54] A. F. Abouraddy, K. C. Toussaint. Three-dimensional polarization control in microscopy. Phys. Rev. Lett., 96, 153901(2006).

    [55] B. J. Roxworthy, K. C. Toussaint. Optical trapping with π-phase cylindrical vector beams. New J. Phys., 12, 073012(2010). https://doi.org/10.1088/1367-2630/12/7/073012

    [56] H. Moradi et al. Efficient optical trapping with cylindrical vector beams. Opt. Express, 27, 7266(2019).

    [57] V. D’Ambrosio et al. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun., 4, 2432(2013).

    [58] F. K. Fatemi. Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems. Opt. Express, 19, 25143-25150(2011).

    [59] A. Büse et al. Symmetry protection of photonic entanglement in the interaction with a single nanoaperture. Phys. Rev. Lett., 121, 173901(2018).

    [60] V. Parigi et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun., 6, 7706(2015).

    [61] V. D’Ambrosio et al. Entangled vector vortex beams. Phys. Rev. A, 94, 030304(2016).

    [62] B. Ndagano et al. Creation and detection of vector vortex modes for classical and quantum communication. J. Lightwave Technol., 36, 292-301(2018).

    [63] Y. S. Rumala et al. Tunable supercontinuum light vector vortex beam generator using a q-plate. Opt. Lett., 38, 5083-5086(2013).

    [64] V. D’Ambrosio et al. Complete experimental toolbox for alignment-free quantum communication. Nat. Commun., 3, 961(2012).

    [65] G. Vallone et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett., 113, 060503(2014).

    [66] G. Carvacho et al. Experimental investigation on the geometry of GHz states. Sci. Rep., 7, 13265(2017).

    [67] F. Bouchard et al. Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons. Quantum, 2, 111(2018).

    [68] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [69] L. Marrucci et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt., 13, 064001(2011).

    [70] E. Nagali et al. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett., 103, 013601(2009).

    [71] N. Friis et al. Entanglement certification from theory to experiment. Nat. Rev. Phys., 1, 72-87(2019).

    [72] D. F. James et al. Measurement of qubits. Phys. Rev. A., 64, 052312(2001).

    [73] J. F. Clauser et al. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23, 880-884(1969).

    [74] N. D. Mermin. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett., 65, 1838-1840(1990).

    [75] M. Ardehali. Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A, 46, 5375-5378(1992).

    [76] A. Belinski, D. N. Klyshko. Interference of light and Bell’s theorem. Phys. Usp., 36, 653-693(1993).

    [77] L. Hardy. Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett., 68, 2981-2984(1992).

    [78] L. Hardy. Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett., 71, 1665-1668(1993).

    [79] S.-H. Jiang et al. Generalized Hardy’s paradox. Phys. Rev. Lett., 120, 050403(2018).

    [80] S. Kochen, E. P. Specker. The problem of hidden variables in quantum mechanics. J. Math. Mech., 17, 59-87(1967).

    [81] E. Karimi et al. Spin-orbit hybrid entanglement of photons and quantum contextuality. Phys. Rev. A, 82, 022115(2010).

    [82] A. Aiello et al. Quantum-like nonseparable structures in optical beams. New J. Phys., 17, 043024(2015).

    [83] M. McLaren, T. Konrad, A. Forbes. Measuring the nonseparability of vector vortex beams. Phys. Rev. A, 92, 023833(2015).

    [84] D. Collins et al. Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett., 88, 170405(2002).

    [85] J.-D. Bancal et al. Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett., 106, 250404(2011).

    [86] H. Bechmann-Pasquinucci, W. Tittel. Quantum cryptography using larger alphabets. Phys. Rev. A, 61, 062308(2000).

    [87] N. J. Cerf et al. Security of quantum key distribution using d-level systems. Phys. Rev. Lett., 88, 127902(2002).

    [88] C. Vitelli et al. Joining the quantum state of two photons into one. Nat. Photonics, 7, 521-526(2013).

    [89] X. Cai et al. Integrated compact optical vortex beam emitters. Science, 338, 363-366(2012).

    [90] Y. Chen et al. Mapping twisted light into and out of a photonic chip. Phys. Rev. Lett., 121, 233602(2018).

    [91] J. Liu et al. Direct fiber vector Eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light: Sci. Appl., 7, 17148(2018).

    [92] H. Cao et al. Distribution of high-dimensional orbital angular momentum entanglement at telecom wavelength over 1 km OAM fiber(2018).

    Daniele Cozzolino, Emanuele Polino, Mauro Valeri, Gonzalo Carvacho, Davide Bacco, Nicolò Spagnolo, Leif K. Oxenløwe, Fabio Sciarrino. Air-core fiber distribution of hybrid vector vortex-polarization entangled states[J]. Advanced Photonics, 2019, 1(4): 046005
    Download Citation