• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 19, Issue 5, 769 (2021)
ZHANG Qinyi1, YAN Yutao1, and DING Jiangqiao2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11805/tkyda2021246 Cite this Article
    ZHANG Qinyi, YAN Yutao, DING Jiangqiao. Review of terahertz waveguide filters research process[J]. Journal of Terahertz Science and Electronic Information Technology , 2021, 19(5): 769 Copy Citation Text show less
    References

    [1] SIEGEL P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002,50(3):910–928. doi:10.1109/22.989974.

    [2] SHI Shengcai,PAINE S,YAO Qijun,et al. Terahertz and far-infrared windows opened at Dome A in antarctica[J]. Nature Astronomy, 2016,1(1):1–7. doi:10.1038/s41550–016–0001.

    [5] ZHAO Yun. Quasi-corrugated substrate integrated waveguide H-plane horn antenna with wideband and low-profile characteristics[J]. International Journal of RF and Microwave Computer-aided Engineering, 2019,29(2):e21539.1–e21539.6. doi:10.1002/mmce. 21539.

    [6] ST?RKE P,CARTA C,ELLINGER F. Direct chip-to-waveguide transition realized with wire bonding for 140–220 GHz G-band[J]. IEEE Transactions on Terahertz Science and Technology, 2020,10(3):302–308. doi:10.1109/TTHZ. 2020.2971690.

    [7] DING Jiangqiao,SHI Shengcai,ZHOU Kang,et al. WR-3 band quasi-elliptical waveguide filters using higher order mode resonances[J]. IEEE Transactions on Terahertz Science and Technology, 2017,7(3):302–309. doi:10.1109/TTHZ.2017.2686007.

    [8] DING Jiangqiao,ZHAO Yun,GE Junxiang,et al. A 90° waveguide hybrid with low amplitude imbalance in full W-band[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2019,40(4):429–434. doi:10.1007/s10762–019–00577–1.

    [9] TREUTTEL J,GATILOVA L,MAESTRINI A,et al. A 520–620 GHz Schottky receiver front-end for planetary science and remote sensing with 1?070–1?500?K DSB noise temperature at room temperature[J]. IEEE Transactions on Terahertz Science and Technology, 2015,6(1):148–155. doi:10.1109/TTHZ.2015.2496421.

    [10] DING Jiangqiao,MAESTRINI A,GATILOVA L,et al. A 300?GHz power-combined frequency doubler based on E-plane 90°-hybrid and Y-junction[J]. Microwave and Optical Technology Letters, 2020,62(8):2683-2691. doi:10.1002/mop.32146.

    [11] CAI Jun,WU Xianping,FENG Jinjun. Traveling-wave tube harmonic amplifier in terahertz and experimental demonstration[J]. IEEE Transactions on Electron Devices, 2014,62(2):648–651. doi:10.1109/TED.2014.2377914.

    [12] LI Jiusheng. Terahertz wave narrow bandpass filter based on photonic crystal[J]. Optics Communications, 2010,283(13): 2647–2650. doi:10.1016/j.optcom.2010.02.046.

    [13] CHIANG Yiju,YANG Chanshan,YANG Yuhang,et al. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial[J]. Applied Physics Letters, 2011,99(19):191909. doi:10.1063/1.3660273.

    [14] SHIROKOFF E,BARRY P S,BRADFORD C M,et al. MKID development for SuperSpec:an on-chip,mm-wave,filter-bank spectrometer[C]//Millimeter,Submillimeter,and Far-Infrared Detectors and Instrumentation for Astronomy VI. Proceedings of SPIE–The International Society for Optical Engineering. Amsterdam,Netherlands:[s.n.], 2012:1–11. doi:10.1117/12.927070.

    [15] EBLABLA A M,LI Xu,WALLIS D J,et al. GaN on low-resistivity silicon THz high–Q passive device technology[J]. IEEE Transactions on Terahertz Science and Technology, 2016,7(1):93-97. doi:10.1109/TTHZ.2016.2618751.

    [16] DING Jiangqiao,HU Jie,SHI Shengcai. 350 GHz bandpass filters using superconducting coplanar waveguide[J]. IEEE Transactions on Terahertz Science and Technology, 2021,11(5):1. doi:10.1109/TTHZ.2021.3071019.

    [17] LEONG K M K H,HENNIG K,ZHANG Chunbo,et al. WR-1.5 silicon micromachined waveguide components and active circuit integration methodology[J]. IEEE Transactions on Microwave Theory and Techniques, 2012,60(4):998–1005. doi:10.1109/TMTT.2012.2184296.

    [18] SHANG Xiaobang,KE Maolong,WANG Yi,et al. WR-3 band waveguides and filters fabricated using SU-8 photoresist micromachining technology[J]. IEEE Transactions on Terahertz Science and Technology, 2012,2(6):629–637. doi: 10.1109/TTHZ.2012.2220136.

    [19] STANEC J R,BARKER N S. Fabrication and integration of micromachined submillimeter-wave circuits[J]. IEEE Microwave and Wireless Components Letters, 2011,21(8):409–411. doi:10.1109/LMWC.2011.2158411.

    [20] KOLLER D,BRYERTON E W,HESLER J L. WM380(675–700 GHz) bandpass filters in milled,split-block construction[J]. IEEE Transactions on Terahertz Science and Technology, 2018,8(6):630–637. doi:10.1109/TTHZ.2018.2873114.

    [22] XU Jing,DING Jiangqiao,ZHAO Yun,et al. W-band broadband waveguide filter based on H-plane offset coupling[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2019,40(4):412–418. doi:10.1007/s10762–019–00571–7.

    [23] LIAO Xiaoyi,WAN Lei,YIN Yong,et al. W-band low-loss bandpass filter using rectangular resonant cavities[J]. IET Microwaves, Antennas & Propagation, 2014,8(15):1440–1444. doi:10.1049/iet-map.2014.0252.

    [25] ZHUANG Jianxing,HONG Wei,HAO Zhangcheng. Design and analysis of a terahertz bandpass filter[C]//2015 IEEE International Wireless Symposium(IWS 2015). Shenzhen,China:IEEE, 2015:1–4. doi:10.1109/IEEE–IWS.2015.7164597.

    [26] ZHANG Naibo,SONG Ruiliang,HU Mingjun,et al. A low-loss design of bandpass filter at the terahertz band[J]. IEEE Microwave and Wireless Components Letters, 2018,28(7):573–575. doi:10.1109/LMWC.2018.2835650.

    [27] DING Jiangqiao,LIU Dong,SHI Shengcai,et al. W-band quasi-elliptical waveguide filter with cross-coupling and source-load coupling[J]. Electronics Letters, 2016,52(23):1960–1961. doi:10.1049/el.2016.3245.

    [28] DING Jiangqiao,SHI Shengcai,ZHOU Kang,et al. Analysis of 220 GHz low-loss quasi-elliptic waveguide bandpass filter[J]. IEEE Microwave and Wireless Components Letters, 2017,27(7):648–650. doi:10.1109/LMWC.2017.2711544.

    [29] LEAL-SEVILLANO C A,MONTEJO-GARAI J R,RUIZ-CRUZ J A,et al. Low-loss elliptical response filter at 100 GHz[J]. IEEE Microwave and Wireless Components Letters, 2012,22(9):459–461. doi:10.1109/LMWC.2012.2212237.

    [30] SHANG Xiaobang,LANCASTER M,DONG Yuliang. W-band waveguide filter based on large TM120 resonators to ease CNC milling[J]. Electronics Letters, 2017,53(7):488–490. doi:10.1049/el.2016.4131.

    [31] ZHOU Kang,DING Jiangqiao,ZHOU Chunxia,et al. W-band dual-band quasi-elliptical waveguide filter with flexibly allocated frequency and bandwidth ratios[J]. IEEE Microwave and Wireless Components Letters, 2018,28(3):206–208. doi: 10.1109/LMWC.2018.2796840.

    [32] XIAO Yu,SHAN Peizhe,ZHU Kaiqiang,et al. Analysis of a novel singlet and its application in THz bandpass filter design[J]. IEEE Transactions on Terahertz Science and Technology, 2018,8(3):312–320. doi:10.1109/TTHZ.2018.2823541.

    [33] WU Yiwen,HAO Zhangcheng,LU Rong,et al. A high-selectivity D-band mixed-mode filter based on the coupled overmode cavities[J]. IEEE Transactions on Microwave Theory and Techniques, 2020,68(6):2331–2342. doi:10.1109/TMTT.2020.2977903.

    [34] WANG Jie,ZHAO Yun,DING Jiangqiao. 400?GHz easy-packaging waveguide filters based on mixed-mode and off-axis couplings[J]. IEEE Access, 2021(9):76642–76648. doi:10.1109/ACCESS.2021.3082569.

    [35] LEAL-SEVILLANO C A,MONTEJO-GARAI J R, KE Maolong,et al. A pseudo-elliptical response filter at W-band fabricated with thick SU-8 photo-resist technology[J]. IEEE Microwave and Wireless Components Letters, 2012,22(3):105–107. doi:10.1109/LMWC.2012.2183861.

    [36] SHANG Xiaobang,KE Maolong,WANG Yi,et al. Micromachined W-band waveguide and filter with two embedded H-plane bends[J]. IET Microwaves,Antennas & Propagation, 2011,5(3):334–339. doi:10.1049/iet–map.2010.0272.

    [37] SHANG Xiaobang,KE Maolong,WANG Yi,et al. Micromachined WR-3 waveguide filter with embedded bends[J]. Electronics Letters, 2011,47(9):545–547. doi:10.1049/el.2011.0525.

    [38] CHEN Qi,SHANG Xiaobang,TIAN Yingtao,et al. SU-8 micromachined WR-3 band waveguide bandpass filter with low insertion loss[J]. Electronics Letters, 2013,49(7):480–482. doi:10.1049/el.2013.0277.

    [39] YANG Hao,DHAYALAN Y,SHANG Xiaobang,et al. WR-3 waveguide bandpass filters fabricated using high precision CNC machining and SU-8 photoresist technology[J]. IEEE Transactions on Terahertz Science and Technology, 2017,8(1):100–107. doi:10.1109/TTHZ.2017.2775441.

    [40] SHANG Xiaobang,TIAN Yingtao,LANCASTER M J,et al. A SU8 micromachined WR-1.5 band waveguide filter[J]. IEEE Microwave and Wireless Components Letters, 2013,23(6):300–302. doi:10.1109/LMWC.2013.2260733.

    [41] GUO Cheng,DHAYALAN Y,SHANG Xiaobang,et al. A 135–150 GHz frequency tripler using SU-8 micromachined WR-5 waveguides[J]. IEEE Transactions on Microwave Theory and Techniques, 2019,68(3):1035–1044. doi:10.1109/TMTT.2019.2955684.

    [42] BEUERLE B,CAMPION J,SHAH U,et al. A very low loss 220–325 GHz silicon micromachined waveguide technology[J]. IEEE Transactions on Terahertz Science and Technology, 2018,8(2):248–250. doi:10.1109/TTHZ.2018.2791841.

    [43] ZHAO Xinghai,BAO Jinfu,SHAN Guangcun,et al. D-band micromachined silicon rectangular waveguide filter[J]. IEEE Microwave and Wireless Components Letters, 2012,22(5):230–232. doi:10.1109/LMWC.2012.2193121.

    [44] ZHAO Xinghai,SHAN Guangcun,DU Yijia,et al. G-band rectangular waveguide filter fabricated using deep reactive ion etching and bonding processes[J]. Micro & Nano Letters, 2012,7(12):1237–1240. doi:10.1049/mnl.2012.0567.

    [45] VAHIDPOUR M,SARABANDI K. Micromachined J-band rectangular waveguide filter[C]//2011 XXXth URSI General Assembly and Scientific Symposium. Istanbul,Turkey:IEEE, 2011:1–4. doi:10.1109/URSIGASS.2011.6050631.

    [46] HU Jiang,XIE Shanyi,ZHANG Yong. Micromachined terahertz rectangular waveguide bandpass filter on silicon-substrate[J]. IEEE Microwave and Wireless Components Letters, 2012,22(12):636–638. doi:10.1109/LMWC.2012.2228179.

    [47] LEAL-SEVILLANO C A,RECK T J,JUNG-KUBIAK C,et al. Silicon micromachined canonical E-plane and H-plane bandpass filters at the terahertz band[J]. IEEE Microwave and Wireless Components Letters, 2013,23(6):288–290. doi: 10.1109/LMWC.2013.2258097.

    [48] TANG Hongjun,HONG Wei,YANG Guangqi,et al. Silicon based THz antenna and filter with MEMS process[C]//International Workshop on Antenna Technology(IWAT). Hong Kong,China:IEEE, 2011:148–151. doi:10.1109/IWAT.2011.5752383.

    [49] ZHUANG Jianxing,HAO Zhangcheng,HONG Wei. Silicon micromachined terahertz bandpass filter with elliptic cavities[J]. IEEE Transactions on Terahertz Science and Technology, 2015,5(6):1040–1047. doi:10.1109/TTHZ.2015.2480844.

    [50] LIU Shuang,HU Jiang,ZHANG Yong,et al. 1?THz micromachined waveguide band-pass filter[J]. Journal of Infrared, Millimeter,and Terahertz Waves, 2016,37(5):435–447. doi:10.1007/s10762–015–0229–6.

    [51] GLUBOKOV O,ZHAO Xinghai,CAMPION J,et al. Investigation of fabrication accuracy and repeatability of high-Q silicon-micromachined narrowband sub-THz waveguide filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2019,67(9):3696–3706. doi:10.1109/TMTT.2019.2926244.

    [52] GLUBOKOV O,ZHAO Xinghai,CAMPION J,et al. Micromachined filters at 450?GHz with 1% fractional bandwidth and unloaded Q beyond 700[J]. IEEE Transactions on Terahertz Science and Technology, 2018,9(1):106–108. doi: 10.1109/TTHZ.2018.2883075.

    [53] SONG S,SEO K S. A W-band air–cavity filter integrated on a thin-film substrate[J]. IEEE Microwave and Wireless Components Letters, 2009,19(4):200–202. doi:10.1109/LMWC.2009.2015492.

    [54] LEAL-SEVILLANO C A,PISANO G,MONTEJO-GARAI J R,et al. Development of low loss waveguide filters for radio–astronomy applications[J]. Infrared Physics & Technology, 2013(61):224–229. doi:10.1016/j.infrared.2013.08.012.

    [55] STANEC J R,BARKER N S. Fabrication and integration of micromachined submillimeter–wave circuits[J]. IEEE Microwave and Wireless Components Letters, 2011,21(8):409–411. doi:10.1109/LMWC.2011.2158411.

    [56] SHANG Xiaobang,PENCHEV P,GUO Cheng,et al. W-band waveguide filters fabricated by laser micromachining and 3-D printing[J]. IEEE Transactions on Microwave Theory and Techniques, 2016,64(8):2572–2580. doi:10.1109/TMTT. 2016.2574839.

    [57] HAO Zhangcheng,DING Wenqi,HONG Wei. Developing low-cost W-band SIW bandpass filters using the commercially available printed-circuit-board technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2016,64(6):1775–1786. doi:10.1109/TMTT.2016.2553029.

    [58] XIAO Yu,SHAN Peizhe,ZHAO Yu,et al. Design of a W-band GaAs-based SIW chip filter using higher order mode resonances[J]. IEEE Microwave and Wireless Components Letters, 2019,29(2):104–106. doi:10.1109/LMWC.2018.2890265.

    [59] LIU Yuchen,LI Yang,YANG Linan,et al. Terahertz monolithic integrated cavity filter based on cyclic etched SiC via-holes[J]. IEEE Transactions on Electron Devices, 2020,68(1):311–317. doi:10.1109/TED.2020.3038351.

    [60] JGUIRIM N,PASSERIEUX D,PAROU N,et al. Design and additive microfabrication of a two-pole 287 GHz waveguide bandpass filter[J]. IEEE Microwave and Wireless Components Letters, 2019,30(1):20–22. doi:10.1109/LMWC.2019.2955595.

    ZHANG Qinyi, YAN Yutao, DING Jiangqiao. Review of terahertz waveguide filters research process[J]. Journal of Terahertz Science and Electronic Information Technology , 2021, 19(5): 769
    Download Citation