• Journal of Applied Optics
  • Vol. 40, Issue 6, 1050 (2019)
GAN Yuanying*, LIU Chuntong, LI Hongcai, and MA Shixin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.5768/jao201940.0602002 Cite this Article
    GAN Yuanying, LIU Chuntong, LI Hongcai, MA Shixin. Research status and key issues of optical image camouflage effectiveness evaluation[J]. Journal of Applied Optics, 2019, 40(6): 1050 Copy Citation Text show less
    References

    [1] ZHANG Jianchun.Camouflage camouflage technology[M]. Beijing: China Textile Press, 2002.

    [2] MERILAITA S, SCOTT-SAMUEL N E, CUTHILL I C. How camouflage works[J]. Philosophical Transactions of the Royal Society B: Biological Sciences 2017, 372(1724): 20160341.

    [3] XING Xin. The basis of stealth camouflage technology [M]. Changsha: National University of Defense Technology Press, 2012.

    [4] YAN Yunhui, WANG Zhan, DONG Dewei. Current actuality and development tendency of military camouflage technology[J]. China Mechanical Engineering, 2012, 23(17): 2136-2141.

    [5] CHENG Gang, FANG Fan, NING Fei, et al. Study on performance of multi spectral reconnaissance of unmanned aerial vehicle[J]. Journal of Applied Optics, 2017, 38(5): 685-688.

    [6] SINGH S K, DHAWALE C A, MISRA S. Survey of object detection methods in camouflaged image[J]. IERI Procedia, 2013, 4: 351-357.

    [7] YU Xun, YANG Ye, JIANG Xu, et al. Recognition of camouflage targets by polarization spectral imaging system[J]. Journal of Applied Optics, 2016, 37(4): 537-541.

    [8] XU Weidong, LYU Xuliang, CHEN Bing, et al. A model based on texture analysis for the performance evaluation of camouflage screen equipment[J]. Acta Armamentarii, 2002, 23(3): 329-331.

    [9] RAGHU P P, YEGNANARAYANA B. Supervised texture classification using a probabilistic neural network and constraint satisfaction model[J]. IEEE Transactions on Neural Networks, 1998, 9(3): 516-522.

    [10] WANG J Q, YAGI Y. Integrating color and shape-texture features for adaptive real-time object tracking[J]. IEEE Transactions on Image Processing, 2008, 17(2): 235-240.

    [11] WANG He, BAI Tingzhu. Evaluation of optical camouflage based on tolerance nearness sets theory[J]. Acta Optica Sinica, 2012, 32(12): 128-133.

    [12] WANG Zhan, YAN Yunhui, JIAO Xueyong. Multi-index comprehensive evaluation of camouflage based on gray theory[J]. Acta Armamentarii, 2013, 34(10): 1250-1257.

    [13] LIN Wei, CHEN Yuhua, GAO Hongsheng, et al. A method of camouflage evaluation based on texture analysis model of Gabor wavelet[J]. Acta Armamentarii, 2007, 28(10): 1191-1194.

    [14] TAN X Y, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1635-1650.

    [15] TRAN T, PHAM V, SHYU K. Image segmentation using fuzzy energy-based active contour with shape prior[J]. Journal of Visual Communication and Image Representation, 2014, 25(7): 1732-1745.

    [16] REN Guangkuo. Camouflage effect visual analysis and evaluation technology and system for aerial reconnaissance[D]. Hangzhou: Zhejiang University, 2016.

    [17] SONG Guilan, TANG Shunqing. A method of spectral pattern recognition for color camouflage[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 1996, 16(6): 567-570.

    [18] HUA Wenshen, YANG Jia, LIU Xun, et al. Camouflage assessment based on hyperspectral characteristics[J]. Journal of Applied Optics, 2013, 34(6): 964-967.

    [19] LIU Xun, HUA Wenshen, YANG Jia. Camouflage effect evaluation based on hyperspectral detecting technology[J]. Infrared and Laser Engineering, 2014, 43(10): 3228-3232.

    [20] GAO Wei, SUN Yifan, SUN Peng, et al. Quantitative evaluation of jamming effect on spectral imaging based on spectral similarity measure[J]. Acta Photonica Sinica, 2015, 44(12): 57-63.

    [21] CHEN Lin. Gestalt laws of proximity and similarity and tolerance spaces[J]. Acta Psychologica Sinica, 1984, 16(3): 259-266.

    [22] SOSSINSKY A B. Tolerance space theory and some applications[J]. Acta Applicandae Mathematicae, 1986, 5(2): 137-167.

    [23] PETERS J F, RAMANNA S. Feature selection: near set approach[M]//Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 57-71.

    [24] SZZ , ZAKARIA A. Mild continuity properties of relations and relators in relator spaces[M]//Essays in Mathematics and its Applications. Cham: Springer International Publishing, 2016: 439-511.

    [25] TRAVEN H G C. A neural network approach to statistical pattern classification by ‘semiparametric’ estimation of probability density functions[J]. IEEE Transactions on Neural Networks, 1991, 2(3): 366-377.

    [26] XUE Jingjing, BAI Tingzhu, LI Guochen. Study for evaluation of camouflage material effectiveness[J]. Optical Technique, 2005, 31(3): 449-451.

    [27] YU Jin, ZHU Lifan, DU Hailu. Evaluation model of optical camouflage effect based on BP neural network[J]. Shipboard Electronic Countermeasure, 2009, 32(6): 55-57.

    [28] GRETZMACHER F M, RUPPERT G, NYBERG S. Camouflage assessment considering human perception data[J]. Proceedings of SPIE-the International Society for Optical Engineering, 1998,3375: 10.1117/12.327177.

    [29] NYBERG S. Assessing camouflage methods using textural features[J]. Optical Engineering, 2001, 40(9): 1869.

    [30] MONDAL A, GHOSH S, GHOSH A. Partially camouflaged object tracking using modified probabilistic neural network and fuzzy energy based active contour[J]. International Journal of Computer Vision, 2017, 122(1): 116-148.

    [31] WANG Xin, WANG Bin, ZHANG Liming. Airport detection based on salient areas in remote sensing images[J]. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(3): 336-344.

    [32] SATOH S, MIYAKE S. A model of overt visual attention based on scale-space theory[J]. Systems and Computers in Japan, 2004, 35(10): 1-13.

    [33] QI J, XU L L, CHAO W. Evaluation of engineering camouflage effectiveness based on human visual attention mechanisms[C]//2011 International Conference on E-Business and E-Government (ICEE). USA: IEEE, 2011.

    [34] XUE F, YONG C X, XU S, et al. Camouflage performance analysis and evaluation framework based on features fusion[J]. Multimedia Tools and Applications, 2016, 75(7): 4065-4082.

    [35] EDWARDS T C . NVESD time-limited search model[J]. SPIE, 2003(5076): 53-59.

    [36] MAURER T, WILSON D L, DRIGGERS R G. Search and detection modeling of military imaging systems[J]. Optical Engineering, 2013, 52(4): 041108.

    [37] GROVE E. AMSAA technical report No. TR-731, validation of the search and target acquisition (STA) time-limited search model for target detection[R]. [S.l.]: [s.n.], 2003.

    [38] PHAM P, NGUYEN D, DO T, et al. Evaluation of deep models for real-time small object detection[M].Neural Information Processing. Cham: Springer International Publishing, 2017: 516-526.

    [39] SAATY T L. A scaling method for priorities in hierarchical structures[J]. Journal of Mathematical Psychology, 1977, 15(3): 234-281.

    [40] LIAO H C, XU Z S, XIA M M. Multiplicative consistency of hesitant fuzzy preference relation and its application in group decision making[J]. International Journal of Information Technology & Decision Making, 2014, 13(1): 47-76.

    [41] ZADEH L A. Is there a need for fuzzy logic?[J]. Information Sciences, 2008, 178(13): 2751-2779.

    [42] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.

    [43] ATANASSOV K, GARGOV G. Interval valued intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1989, 31(3): 343-349.

    [44] WANG He, BAI Tingzhu. Infrared camouflage image evaluation using atanassov’s intuition fuzzy sets[J]. Infrared Technology, 2012, 34(3): 181-184.

    [45] FANG Hao, LI Aihua, WANG Tao, et al. Synthetic evaluation method of hyperspectral camouflage effect based on intuitionistic fuzzy decision[J]. Laser & Optoelectronics Progress, 2019, 56(5): 73-80.

    [46] CHEN Q, XU Z S, LIU S S, et al. A method based on interval-valued intuitionistic fuzzy entropy for multiple attribute decision making[J]. Information: an International Interdisciplinary Journal, 2010, 13(1): 67-77.

    [47] YIN J Q, HAN Y B, HOU W D, et al. Detection of the mobile object with camouflage color under dynamic background based on optical flow[J]. Procedia Engineering, 2011, 15: 2201-2205.

    [48] KASTURI R, GOLDGOF D, SOUNDARARAJAN P, et al. Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 319-336.

    [49] WANG Chao, JI Ming, WANG Jiaoying, et al. Multi-target detecting algorithm based on digital image[J]. Journal of Applied Optics, 2015, 36(3): 386-390.

    [50] LAI Lijun, XU Zhiyong, ZHANG Xuyao. Improved gradient optical flow for digital image stabilization[J]. Infrared and Laser Engineering, 2016, 45(4): 273-279.

    [51] FU Qiongying, YU Xuchu, HU Wenda, et al. A large displacement variational optical flow based on features matching[J]. Journal of Geomatics Science and Technology, 2013, 30(1): 54-57.

    [52] ZHANG Congxuan. Research progress in image sequence variational optical flow calculation technology[J]. Journal of Electronic Measurement and Instrument, 2015(6): 793-803.

    [53] QIN Renzhi. Research on optical flow calculation technology of image sequence based on guided filter[D]. Nanchang: Nanchang Hangkong University, 2017.

    [54] CHU Wei. Vehicle recognition based on optical flow algorithm[D]. Suzhou, China: Soochow University, 2016.

    GAN Yuanying, LIU Chuntong, LI Hongcai, MA Shixin. Research status and key issues of optical image camouflage effectiveness evaluation[J]. Journal of Applied Optics, 2019, 40(6): 1050
    Download Citation