[1] Zelmon D E, Hanning E A, Schunemann P G. Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 μm with implications for phase matching in optical frequency-conversion devices[J]. J. Opt. Soc. Am B, 2001, 18(9): 1307-1310.
[2] Vodopyanov K, Voevodin V. Type I and II ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 and 10 μm[J]. Optics Communications, 1995, 117(3-4): 277-282.
[3] Yao J, Yin W, Feng K, et al. Growth and characterization of BaGa4Se7 crystal[J]. Journal of Crystal Growth, 2012, 346(1): 1-4.
[4] Zhang X, Yao J, Yin W, et al. Determination of the nonlinear optical coefficients of the BaGa4Se7 crystal[J]. Optics Express, 2015, 23(1): 552-558.
[5] Hu S, Wang L, Guo Y, et al. High-conversion-efficiency tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.79-μm laser[J]. Optics Letters, 2019, 44(9): 2201-2203.
[6] Geiko P P. Nonlinear crystals for optical parametric oscillators pumped by light pulses of near IR lasers; proceedings of the Twelfth Joint International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics, 2006 [C]. International Society for Optics and Photonics.
[7] Jones R. Parametric oscillation in KTP and KTA at 1064 nm; proceedings of the proceedings-spie the interantional society for optical engineering, 1995 [C]. Spie International Society for Optical.
[8] Chen Y-F, Chen Y, Tsai S. Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP [J]. Applied Physics B, 2004, 79(2): 207-210.
[9] Reghunath A, Malhotra P, Kumar Y, et al. Design of a tunable mid-IR OPO source for DIAL detection of trace gases; proceedings of the Lidar Remote Sensing for Environmental Monitoring VII, 2006[C]. International Society for Optics and Photonics.
[11] Zverev G M, Levchuk E, Pashkov V A, et al. Laser-radiation-induced damage to the surface of lithium niobate and tantalate single crystals [J]. Soviet Journal of Quantum Electronics, 1972, 2(2): 167.
[12] Myers L E, Eckardt R, Fejer M M, et al. Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3 [J]. Optics Letters, 1996, 21(8): 591-593.
[13] Richman B A, Aniolek K W, Kulp T J, et al. Continuously tunable, single-longitudinal-mode, pulsed mid-infrared optical parametric oscillator based on periodically poled lithium niobate [J]. J Opt Soc Am B, 2000, 17(7): 1233-1239.
[14] McEwan K, Terry J. A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO)[J]. Optics Communications, 2000, 182(4-6): 423-432.
[15] Baudisch M, Hemmer M, Pires H, et al. Performance of MgO: PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power[J]. Optics Letters, 2014, 39(20): 5802-5805.
[16] Zhang K, Chen F, Pan Q, et al. Theoretical study on thermal characteristic of MgO: PPLN crystal in high power optical parametric oscillator [J]. Optik, 2019, 178: 190-196.
[17] Koechner W. Solid-State Laser Engineering[M].New York: Springer, 1999.
[18] Isaenko L I, Yelisseyev A P. Recent studies of nonlinear chalcogenide crystals for the mid-IR[J]. Semiconductor Science Technology, 2016, 31(12): 123001.
[19] Finsterbusch K, Bayer A, Zacharias H. Tunable, narrow-band picosecond radiation in the mid-infrared by difference frequency mixing in GaSe and CdSe[J]. Applied Physics B, 2004, 79(4): 457-462.
[20] Roberts D A. Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions[J]. IEEE Journal of Quantum Electronics, 1992, 28(10): 2057-2074.
[21] Beasley J D. Thermal conductivities of some novel nonlinear optical materials[J]. Applied Optics, 1994, 33(6): 1000-1003.
[22] Ni Y, Wu H, Mao M, et al. Growth and characterization of mid-far infrared optical material CdSe crystal[J]. Optical Materials Express, 2018, 8(7): 1796-1805.
[23] Dmitriev V G, Gurzadyan G G, Nikogosyan D N. Handbook of Nonlinear Optical Crystals[M]. Bering: Springer, 1999.
[25] Chaitanya Kumar S, Schunemann P G, Zawilski K T, et al. Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2 [J]. J Opt Soc Am B, 2016, 33(11): D44-D56.
[26] Schunemann P G. Quasi-phasematched semiconductors for nonlinear optical frequency conversion[C]. Proceedings of the Conference on Lasers and Electro Optics, 2019.
[27] Schunemann P G, Pomeranz L A, Magarrell D J. First OPO based on orientation-patterned gallium phosphide (OP-GaP)[C]. Proceedings of the Conference on Lasers and Electro Optics,2015.
[28] Kieleck C, Hildenbrand A, Eichhorn M, et al. OP-GaAs OPO pumped by 2 μm Q-switched lasers∶Tm; Ho∶silica fiber laser and Ho∶YAG laser; proceedings of the Technologies for Optical Countermeasures VII, 2010[C]. International Society for Optics and Photonics.
[29] Harris S E. Tunable optical parametric oscillators[J]. Proceedings of the IEEE, 1969, 57(12): 2096-2113.
[30] Haakestad M W, Arisholm G, Lippert E, et al. High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2[J]. Optics Express, 2008, 16(18): 14263-14273.
[31] Dergachev A, Armstrong D, Smith A, et al. 3.4 μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho: YLF MOPA system[J]. Optics Express, 2007, 15(22): 14404-14413.
[32] Petrov V, Rotermund F, Noack F, et al. Femtosecond parametric generation in ZnGeP2[J]. Optics Letters, 1999, 24(6): 414-416.
[33] Schunemann P G. Improved NLO crystals for mid-IR laser applications; proceedings of the Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications VI, 2007[C]. International Society for Optics and Photonics.
[34] Haakestad M W, Fonnum H, Lippert E. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2[J]. Optics Express, 2014, 22(7): 8556-8564.
[35] Qian C-P, Yao B-Q, Zhao B-R, et al. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation[J]. Optics Letters, 2019, 44(3): 715-718.
[36] Liu G, Chen Y, Yao B, et al. Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals[J]. Applied Physics B, 2019, 125(12): 233.
[37] Liu G Y, Chen Y, Yao B Q, et al. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 μm[J]. Optics Letters, 2020, 45(8): 2347-2350.
[38] Cole B, Goldberg L, Chinn S R, et al. Compact and efficient mid-IR OPO source pumped by a passively Q-switched Tm∶YAP laser[J]. Optics Letters, 2018, 43(5): 1099-1102.
[39] Baudisch M, Hinkelmann M, Wandt D, et al. 2.5-12 μm tunable, 2 μm pumped, ZnGeP2-based OPG/OPA System for the generation of narrowband, μJ-level pulses with sub-20 cm-1 bandwidth; proceedings of the The European Conference on Lasers and Electro-Optics, 2019[C]. Optical Society of America.
[40] Grafenstein L, Bock M, Ueberschaer D, et al. 5 μm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate[J]. Optics Letters, 2017, 42(19): 3796-3799.
[41] Schellhorn M, Spindler G, Eichhorn M. Improvement of the beam quality of a high-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator[J]. Optics Letters, 2017, 42(6): 1185-1188.
[42] Sanchez D, Hemmer M, Baudisch M, et al. 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm[J]. Optica, 2016, 3(2): 147-150.
[43] Yao J, Mei D, Bai L, et al. BaGa4Se7: a new congruent-melting IR nonlinear optical material[J]. Inorganic chemistry, 2010, 49(20): 9212-9216.
[44] Guo Y, Li Z, Lei Z, et al. Synthesis, growth of crack-free large-size BaGa4Se7 crystal, and annealing studies[J]. Crystal Growth Design, 2018, 19(2): 1282-1287.
[45] Yang F, Yao J Y, Xu H Y, et al. High efficiency and high peak power picosecond mid-infrared optical parametric amplifier based on BaGa4Se7 crystal[J]. Optics Letters, 2013, 38(19): 3903-3905.
[46] Yang F, Yao J Y, Xu H Y, et al. Midinfrared Optical Parametric Amplifier With 6.4-11 μm Range Based on BaGa4Se7[J]. IEEE Photonics Technology Letters, 2015, 27(10): 1100-1103.
[47] Yuan J H, Li C, Yao B Q, et al. High power, tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.1 μm Ho∶YAG laser[J]. Optics Express, 2016, 24(6): 6083-6087.
[48] Kostyukova N Y, Boyko A A, Badikov V, et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Optics Letters, 2016, 41(15): 3667-3670.
[49] Zhao B, Chen Y, Yao B, et al. High-efficiency, tunable 8-9 μm BaGa4Se7 optical parametric oscillator pumped at 2.1 μm[J]. Optical Materials Express, 2018, 8(11): 3332-3337.
[50] Sun M G, Cao Z S, Yao J Y, et al. Continuous-wave difference-frequency generation based on BaGa4Se7 crystal[J]. Optics Express, 2019, 27(4): 4014-4023.
[51] Kang M, Deng Y, Yan X, et al. A compact and efficient 4.25 μm BaGa4Se7 optical parametric oscillator[J]. Chinese Optics Letters, 2019, 17(12): 121402.
[52] He Y, Guo Y, Xu D, et al. High energy and tunable mid-infrared source based on BaGa4Se7 crystal by single-pass difference-frequency generation[J]. Optics Express, 2019, 27(6): 9241-9249.
[53] Xu W T, Wang Y Y, Xu D G, et al. High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 μm[J]. Applied Physics B, 2017, 123(3): 80.
[54] Zumsteg F, Bierlein J, Gier T. KxRb1-xTiOPO4: a new nonlinear optical material[J]. Journal of Applied Physics, 1976, 47(11): 4980-4985.
[55] Laudise R, Cava R J, Caporaso A. Phase relations, solubility and growth of potassium titanyl phosphate, KTP[J]. Journal of Crystal Growth, 1986, 74(2): 275-280.
[56] Shou-Quan J, Hong-Da N, Jin-Ge T, et al. Hydrothermal growht of KTP crystals in the medium range of temperature and pressure[J]. Journal of Crystal Growth, 1990, 99(1-4): 900-904.
[57] Bhar G, Chatterjee U, Rudra A, et al. Generation of widely tunable mid-infrared radiation by difference frequency mixing in KTP[J]. Journal of Physics D: Applied Physics, 1997, 30(19): 2693.
[58] Baravets Y, Honzatko P, Todorov F, et al. Narrowband widely tunable CW mid-infrared generator based on difference frequency generation in periodically poled KTP and KTA crystals[J]. Optical Quantum Electronics, 2016, 48(5): 286.
[59] Liu S, He J, Huang H, et al. High power orthogonally polarized mid-infrared optical parametric oscillator with KTA crystals[J]. Applied Physics B, 2012, 108(3): 623-627.
[60] Chen Y, Li Y, Li W, et al. Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier[J]. Optics Communications, 2016, 365: 7-13.
[61] Liu Q, Liu J, Zhang Z, et al. A high energy 3.75 μm KTA optical parametric oscillator at a critical angle[J]. Laser Physics Letters, 2013, 10(7): 075407.
[62] Heiner Z, Petrov V, Steinmeyer G, et al. 100-kHz, dual-beam OPA delivering high-quality, 5-cycle angular-dispersion-compensated mid-infrared idler pulses at 3.1 μm[J]. Optics Express, 2018, 26(20): 25793-25804.
[63] Meng X, Wang Z, Tian W, et al. Watt-level widely tunable femtosecond mid-infrared KTiOAsO4 optical parametric oscillator pumped by a 1.03 μm Yb∶KGW laser[J]. Optics Letters, 2018, 43(4): 943-946.
[64] Balskus K, Zhang Z, McCracken R A, et al. Mid-infrared 333 MHz frequency comb continuously tunable from 1.95 to 4.0 μm[J]. Optics Letters, 2015, 40(17): 4178-4181.
[65] Shan-De L, Zhao-Wei W, Bai-Tao Z, et al. Wildly tunable, high-efficiency MgO: PPLN mid-IR optical parametric oscillator pumped by a Yb-fiber laser[J]. Chinese Physics Letters, 2014, 31(2): 024204.
[66] Ruebel F, Anstett G, L’huillier J. Synchronously pumped mid-infrared optical parametric oscillator with an output power exceeding 1 W at 4.5 μm[J]. Applied Physics B, 2011, 102(4): 751-755.
[67] Yu Y, Chen X, Zhao J, et al. High-repetition-rate tunable mid-infrared optical parametric oscillator based on MgO∶periodically poled lithium niobate[J]. Optical Engineering, 2013, 53(6): 061604.
[68] Niu S, Aierken P, Ababaike M, et al. Widely tunable, high-energy, mid-infrared (2.2-4.8 μm) laser based on a multi-grating MgO∶PPLN optical parametric oscillator[J]. Infrared Physics Technology, 2020, 104: 103121.
[69] Parsa S, Kumar S C, Nandy B, et al. Yb-fiber-pumped, high-beam-quality, idler-resonant mid-infrared picosecond optical parametric oscillator[J]. Optics Express, 2019, 27(18): 25436-25444.
[70] Murray R, Runcorn T, Guha S, et al. High average power parametric wavelength conversion at 3.31-3.48 μm in MgO∶PPLN[J]. Optics Express, 2017, 25(6): 6421-6430.
[71] Peng Y, Zhang J, Wang Y. High power, twin-band mid-infrared PPMgLN optical parametric oscillator pumped at 1.679 μm[J]. Optics Letters, 2020, 45(5): 1281-1284.
[72] Zhang Z, Tan Y, Wang J, et al. Seeded optical parametric oscillator light source for precision spectroscopy[J]. Optics Letters, 2020, 45(4): 1013-1016.
[73] Zhao J, Cheng P, Xu F, et al. Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on MgO∶PPLN at 3.68 μm[J]. Applied Sciences, 2018, 8(8): 1345.
[74] Wang T J, Kang Z H, Zhang H Z, et al. Wide-tunable, high-energy AgGaS2 optical parametric oscillator[J]. Optics Express, 2006, 14(26): 13001-13006.
[75] Fu Y, Midorikawa K, Takahashi E J. A high-energy mid-infrared to THz laser; proceedings of the Frontiers in Optics/Laser Science, Washington, DC, 2018/09/16, 2018[C]. Optical Society of America.
[76] Migal E A, Potemkin F V, Gordienko V M. Highly efficient optical parametric amplifier tunable from near- to mid-IR for driving extreme nonlinear optics in solids[J]. Optics Letters, 2017, 42(24): 5218-5221.
[77] Maekawa H, Tominaga K, Podenas D. Generation of 55 fs-mid-infrared pulses with a 300 cm-1-spectral width and μJ-pulse energy[J]. Japanese Journal of Applied Physics, 2002, 41(3B): L329.
[78] Short R K, Stafsudd O M, Prasad N S, et al. High energy AgGaSe2 optical parametric oscillator operating in 5.7~7 μm region; proceedings of the Nonlinear Optics: Materials, Fundamentals and Applications, 2000[C]. Optical Society of America.
[79] Iwakuni K, Porat G, Bui T Q, et al. Phase-stabilized 100 mW frequency comb near 10 μm[J]. Applied Physics B, 2018, 124(7): 1-7.
[80] Meisenheimer S K, FüRST J U, Buse K, et al. Continuous-wave optical parametric oscillation tunable up to an 8 μm wavelength[J]. Optica, 2017, 4: 189-192.
[81] Imahoko T, Takasago K, Sumiyoshi T, et al. Tunable mid-infrared, high-energy femtosecond laser source for glyco-protein structure analysis[J]. Applied Physics B, 2007, 87(4): 629-634.
[82] Schade W, Khorsandi A, Wilier U, et al. Remote detection of explosives by MIR laser spectroscopy; proceedings of the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland, 2005/05/23, 2005[C]. Optical Society of America.
[83] Novák O, Krogen P R, Kroh T, et al. Femtosecond 8.5 μm source based on intrapulse difference-frequency generation of 2.1 μm pulses[J]. Optics Letters, 2018, 43(6): 1335-1338.
[84] Baudisch M, Beutler M, Gebhardt M, et al. 100 kHz, femtosecond, 4-10 μm tunable, AgGaSe2-based OPA pumped by a CPA Tm: fiber laser system; proceedings of the Advanced Solid State Lasers, 2017[C]. Optical Society of America.
[85] Metzger B, Pollard B, Rimke I, et al. Single-step sub-200 fs mid-infrared generation from an optical parametric oscillator synchronously pumped by an erbium fiber laser[J]. Optics Letters, 2016, 41(18): 4383-4386.
[86] Boyko A A, Kostyukova N Y, Marchev G M, et al. Rb∶PPKTP optical parametric oscillator with intracavity difference-frequency generation in AgGaSe2[J]. Optics Letters, 2016, 41(12): 2791-2794.
[87] Boyko A A, Marchev G M, Petrov V, et al. Intracavity-pumped, cascaded AgGaSe2 optical parametric oscillator tunable from 5.8 to 18 μm[J]. Optics Express, 2015, 23: 33460-33465.
[88] Beutler M, Rimke I, Büttner E, et al. Difference-frequency generation of ultrashort pulses in the mid-IR using Yb-fiber pump systems and AgGaSe2[J]. Optics Express, 2015, 23(3): 2730-2736.
[89] Hegenbarth R, Steinmann A, Sarkisov S Y, et al. Milliwatt-level mid-infrared (10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator[J]. Optics Letters, 2012, 37(17): 3513-3515.
[90] Gerhards M. High energy and narrow bandwidth mid IR nanosecond laser system[J]. Optics Communications, 2004, 241(4): 493-497.
[91] Qu S, Liang H, Liu K, et al. 9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2[J]. Optics letters, 2019, 44(10): 2422-2425.
[92] Heiner Z, Wang L, Petrov V, et al. Broadband vibrational sum-frequency generation spectrometer at 100 kHz in the 950-1750 cm-1 spectral range utilizing a LiGaS2 optical parametric amplifier[J]. Optics Express, 2019, 27(11): 15289-15297.
[93] Penwell S B, Whaley-Mayda L, Tokmakoff A. Single-stage MHz mid-IR OPA using LiGaS2 and a fiber laser pump source[J]. Optics letters, 2018, 43(6): 1363-1366.
[94] Chen B H, Nagy T, Baum P. Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation[J]. Optics Letters, 2018, 43(8): 1742-1745.
[95] Morimoto T, Sono N, Miyamoto T, et al. Generation of a carrier-envelope-phase-stable femtosecond pulse at 10 μm by direct down-conversion from a Ti∶sapphire laser pulse[J]. Applied Physics Express, 2017, 10(12): 122701.
[96] Pupeza I, Sánchez D, Zhang J, et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate[J]. Nature Photonics, 2015, 9(11): 721.
[97] Pelletier E, Sell A, Leitenstorfer A, et al. Mid-infrared optical parametric amplifier based on a LGSe crystal and pumped at 1.6 μm[J]. Optics Express, 2012, 20(25): 27456-27464.
[98] Wang S, Dai S, Jia N, et al. Tunable 7-12 μm picosecond optical parametric amplifier based on a LiInSe2 mid-infrared crystal[J]. Optics Letters, 2017, 42(11): 2098-2101.
[99] Dai S B, Jia N, Chen J K, et al. Picosecond mid-infrared optical parametric amplifier based on LiInSe2 with tenability extending from 3.6 to 4.8 μm[J]. Optics Express, 2017, 25(11): 12860-12866.
[100] Beutler M, Rimke I, Büttner E, et al. Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources[J]. Optics Letters, 2014, 39(15): 4353-4355.
[101] Beutler M, Rimke I, Büttner E, et al. Femtosecond mid-IR difference-frequency generation in LiInSe2[J]. Optical Materials Express, 2013, 3(11): 1834-1838.
[102] Marchev G, Tyazhev A, Vedenyapin V, et al. Nd∶YAG pumped nanosecond optical parametric oscillator based on LiInSe2 with tunability extending from 4.7 to 8.7 μm[J]. Optics Express, 2009, 17(16): 13441-13446.
[103] Zondy J J, Vedenyapin V, Yelisseyev A, et al. LiInSe2 nanosecond optical parametric oscillator[J]. Optics Letters, 2005, 30(18): 2460-2462.
[104] Chen Y, Liu G, Yang C, et al. 1 W, 10.1 μm, CdSe optical parametric oscillator with continuous-wave seed injection[J]. Optics Letters, 2020, 45(7): 2119-2122.
[105] Gaida C, Gebhardt M, Heuermann T, et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation[J]. Light: Science & Applications, 2018, 7(1): 1-8.
[106] Yoshioka K, Igarashi I, Yoshida S, et al. Subcycle mid-infrared coherent transients at 4 MHz repetition rate applicable to light-wave-driven scanning tunneling microscopy[J]. Optics letters, 2019, 44(21): 5350-5353.
[107] Chen Y, Yang C, Liu G, et al. 11 μm, high beam quality idler-resonant CdSe optical parametric oscillator with continuous-wave injection-seeded at 2.58 μm[J]. Optics Express, 2020, 28(11): 17056-17063.
[108] Wang J, Yuan L, Zhang Y, et al. Generation of 320 mW at 10.20 μm based on CdSe long-wave infrared crystal[J]. Journal of Crystal Growth, 2018, 491: 16-19.
[109] Yuan J, Chen Y, Duan X, et al. CdSe optical parametric oscillator operating at 12.07 μm with 170 mW output[J]. Optics & Laser Technology, 2017, 92: 1-4.
[110] Yuan J, Duan X, Yao B, et al. Tunable 10-to 11-μm CdSe optical parametric oscillator pumped by a 2.1-μm Ho∶YAG laser[J]. Applied Physics B, 2016, 122(7): 202.
[111] Zakel A, Wagner G J, Alford W J, et al. High-power, rapidly-tunable dual-band CdSe optical parametric oscillator; proceedings of the Advanced Solid-State Photonics, 2005[C]. Optical Society of America.
[112] Watson M, O’Connor M, Shepherd D, et al. Synchronously pumped CdSe optical parametric oscillator in the 9-10 μm region[J]. Optics letters, 2003, 28(20): 1957-1959.
[113] Carrig T, Rawle C B, Mckinnie I T, et al. Dual-band Cr∶ZnSe laser pump-tuned OPOs; proceedings of the Nonlinear Optics: Materials, Fundamentals and Applications, 2002[C]. Optical Society of America.
[114] Liu K, Liang H, Wang L, et al. Multimicrojoule GaSe-based midinfrared optical parametric amplifier with an ultrabroad idler spectrum covering 4.2-16 μm[J]. Optics letters, 2019, 44(4): 1003-1006.
[115] Yan D, Xu D, Wang Y, et al. High-repetition-rate, tunable and coherent mid-infrared source based on difference frequency generation from a dual-wavelength 2 μm laser and GaSe crystal[J]. Laser Physics, 2018, 28(12): 126205.
[116] Ruehl A, Gambetta A, Hartl I, et al. Widely-tunable mid-infrared frequency comb source based on difference frequency generation[J]. Optics letters, 2012, 37(12): 2232-2234.
[117] Winters D G, Schlup P, Bartels R A. Subpicosecond fiber-based soliton-tuned mid-infrared source in the 9.7-14.9 μm wavelength region[J]. Optics letters, 2010, 35(13): 2179-2181.
[118] Pomeranz L, McCarthy J, Day R, et al. Efficient, 2-5 μm tunable CdSiP2 optical parametric oscillator pumped by a laser source at 1.57 μm[J]. Optics letters, 2018, 43(1): 130-133.
[119] Chalus O, Schunemann P, Zawilski K, et al. Optical parametric generation in CdSiP2[J]. Optics letters, 2010, 35(24): 4142-4144.
[120] Jia Y, Hanka K, Zawilski K T, et al. Continuous-wave whispering-gallery optical parametric oscillator based on CdSiP2[J]. Optics express, 2018, 26(8): 10833-10841.
[121] O’Donnell C F, Kumar S C, Zawilski K, et al. Critically phase-matched Ti: sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2[J]. Optics letters, 2018, 43(7): 1507-1510.
[122] Chaitanya Kumar S, Zawilski K T, Schunemann P G, et al. High-repetition-rate, deep-infrared, picosecond optical parametric oscillator based on CdSiP2[J]. Optics Letters, 2017, 42(18): 3606-3609.
[123] Ramaiahbadarla V, Kumar S C, Estebanmartin A, et al. Ti: sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2[J]. Optics Letters, 2016, 41(8): 1708-1711.
[124] Kumar S C, Esteban-Martin A, Santana A, et al. Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7 μm based on CdSiP2[J]. Optics letters, 2016, 41(14): 3355-3358.
[125] Kumar S C, Krauth J, Steinmann A, et al. High-power femtosecond mid-infrared optical parametric oscillator at 7 μm based on CdSiP2[J]. Optics letters, 2015, 40(7): 1398-1401.
[126] Sánchez D, Hemmer M, Baudisch M, et al. Broadband mid-IR frequency comb with CdSiP2 and AgGaS2 from an Er,Tm∶Ho fiber laser[J]. Optics Letters, 2014, 39(24): 6883-6886.
[127] Zhang Z, Reid D T, Kumar S C, et al. Femtosecond-laser pumped CdSiP2 optical parametric oscillator producing 100 MHz pulses centered at 6.2 μm[J]. Optics letters, 2013, 38(23): 5110-5113.
[128] Marchev G, Pirzio F, Piccoli R, et al. Narrow-bandwidth, mid-infrared, seeded optical parametric generation in 90 phase-matched CdSiP2 crystal pumped by diffraction limited 500 ps pulses at 1064 nm[J]. Optics letters, 2012, 37(15): 3219-3221.
[129] Marchev G, Tyazhev A, Petrov V, et al. Optical parametric generation in CdSiP2 at 6.125 μm pumped by 8 ns long pulses at 1064 nm[J]. Optics Letters, 2012, 37(4): 740-742.
[130] Kumar S C, Agnesi A, Dallocchio P, et al. Compact, 1.5 mJ, 450 MHz, CdSiP2 picosecond optical parametric oscillator near 6.3 μm[J]. Optics letters, 2011, 36(16): 3236-3238.
[131] Petrov V, Marchev G, Schunemann P G, et al. Subnanosecond, 1 kHz, temperature-tuned, noncritical mid-infrared optical parametric oscillator based on CdSiP2 crystal pumped at 1064 nm[J]. Optics letters, 2010, 35(8): 1230-1232.
[132] Schunemann P G, Pomeranz L A, Setzler S D, et al. CW mid-IR OPO based on OP-GaAs[C]. Proceedings of the International Quantum Electronics Conference, 2013.
[133] Wueppen J, Nyga S, Jungbluth B, et al. 1.95 μm-pumped OP-GaAs optical parametric oscillator with 10.6 μm idler wavelength[J]. Optics Letters, 2016, 41(18): 4225-4228.
[134] Fu Q, Xu L, Liang S, et al. High-average-power picosecond mid-infrared OP-GaAs OPO[J]. Optics Express, 2020, 28(4): 5741-5748.
[135] Heckl O H, Bjork B J, Winkler G, et al. Three-photon absorption in optical parametric oscillators based on OP-GaAs[J]. Optics Letters, 2016, 41(22): 5405-5408.
[136] Clément Q, Melkonian J M, Dherbecourt J B, et al. Longwave infrared, single-frequency, tunable, pulsed optical parametric oscillator based on orientation-patterned GaAs for gas sensing[J]. Optics Letters, 2015, 40(12): 2676-2679.
[137] Guha S, Barnes J O, Schunemann P G. Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned Gallium Phosphide[J]. Optical Materials Express, 2015, 5(12): 2911-2923.
[138] Insero G, Clivati C, D’Ambrosio D, et al. Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals[J]. Optics Letters, 2016, 41(21): 5114-5117.
[139] Fu Q, Xu L, Liang S, et al. High-beam-quality, watt-level, widely tunable, mid-infrared OP-GaAs optical parametric oscillator[J]. Optics Letters, 2019, 44(11): 2744-2747.
[140] Boyko A A, Schunemann P G, Guha S, et al. Optical parametric oscillator pumped at ~1 μm with intracavity mid-IR difference-frequency generation in OPGaAs[J]. Optical Materials Express, 2018, 8(3): 549-554.
[141] Xu L, Fu Q, Liang S, et al. Thulium-fiber-laser-pumped, high-peak-power, picosecond, mid-infrared orientation-patterned GaAs optical parametric generator and amplifier[J]. Optics Letters, 2017, 42(19): 4036-4039.
[142] Gutty F, Grisard A, Larat C, et al. 140 W peak power laser system tunable in the LWIR[J]. Optics Express, 2017, 25(16): 18897-18906.
[143] Smolski V O, Vasilyev S, Schunemann P G, et al. Cr: ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm[J]. Optics Letters, 2015, 40(12): 2906-2908.
[144] Vodopyanov K L, Makasyuk I, Schunemann P G. Grating tunable 4-14 μm GaAs optical parametric oscillator pumped at 3 μm[J]. Optics Express, 2014, 22(4): 4131-4136.
[145] Devi K, Schunemann P G, Ebrahim-Zadeh M. Continuous-wave, multimilliwatt, mid-infrared source tunable across 6.4-7.5 μm based on orientation-patterned GaAs[J]. Optics Letters, 2014, 39(23): 6751-6754.
[146] Vasilyev S, Schiller S, Nevsky A, et al. Broadly tunable single-frequency cw mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs[J]. Optics Letters, 2008, 33(13): 1413-1415.
[147] Kuo P S, Vodopyanov K L, Fejer M M, et al. Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs[J]. Optics Letters, 2006, 31(1): 71-73.
[148] Odonnell C F, Kumar S C, Schunemann P G, et al. Femtosecond optical parametric oscillator continuously tunable across 3.6-8 μm based on orientation-patterned gallium phosphide[J]. Optics Letters, 2019, 44(18): 4570-4573.
[149] Maidment L, Kara O, Schunemann P G, et al. Long-wave infrared generation from femtosecond and picosecond optical parametric oscillators based on orientation-patterned gallium phosphide[J]. Applied Physics B, 2018, 124(7): 143.
[150] Ye H, Kumar S C, Wei J, et al. Singly-resonant pulsed optical parametric oscillator based on orientation-patterned gallium phosphide[J]. Optics Letters, 2018, 43(11): 2454-2457.
[151] Devi K, Padhye A, Schunemann P G, et al. Multimilliwatt, tunable, continuous-wave, mid-infrared generation across 4.6-4.7 μm based on orientation-patterned gallium phosphide[J]. Optics Letters, 2018, 43(10): 2284-2287.
[152] Sorokin E, Marandi A, Schunemann P G, et al. Efficient half-harmonic generation of three-optical-cycle mid-IR frequency comb around 4 μm using OP-GaP[J]. Optics Express, 2018, 26(8): 9963-9971.
[153] Sotor J, Martynkien T, Schunemann P G, et al. All-fiber mid-infrared source tunable from 6 to 9 μm based on difference frequency generation in OP-GaP crystal[J]. Optics Express, 2018, 26(9): 11756-11763.
[154] Ru Q, Loparo Z E, Zhang X, et al. Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3 μm and pumped by an Er-fiber laser[J]. Optics Letters, 2017, 42(22): 4756-4759.
[155] Maidment L, Schunemann P G, Reid D T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator[J]. Optics Letters, 2016, 41(18): 4261-4264.