• Journal of Synthetic Crystals
  • Vol. 49, Issue 8, 1379 (2020)
CHEN Yi, LIU Gaoyou, WANG Ruixue, YANG Chao..., YANG Ke, MI Shuyi, DAI Tongyu, DUAN Xiaoming, YAO Baoquan*, JU Youlun and WANG Yuezhu|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    CHEN Yi, LIU Gaoyou, WANG Ruixue, YANG Chao, YANG Ke, MI Shuyi, DAI Tongyu, DUAN Xiaoming, YAO Baoquan, JU Youlun, WANG Yuezhu. Research Progress of Nonlinear Crystal Applied in Mid- and Long-wave Infrared Solid-state Laser[J]. Journal of Synthetic Crystals, 2020, 49(8): 1379 Copy Citation Text show less
    References

    [1] Zelmon D E, Hanning E A, Schunemann P G. Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 μm with implications for phase matching in optical frequency-conversion devices[J]. J. Opt. Soc. Am B, 2001, 18(9): 1307-1310.

    [2] Vodopyanov K, Voevodin V. Type I and II ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 and 10 μm[J]. Optics Communications, 1995, 117(3-4): 277-282.

    [3] Yao J, Yin W, Feng K, et al. Growth and characterization of BaGa4Se7 crystal[J]. Journal of Crystal Growth, 2012, 346(1): 1-4.

    [4] Zhang X, Yao J, Yin W, et al. Determination of the nonlinear optical coefficients of the BaGa4Se7 crystal[J]. Optics Express, 2015, 23(1): 552-558.

    [5] Hu S, Wang L, Guo Y, et al. High-conversion-efficiency tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.79-μm laser[J]. Optics Letters, 2019, 44(9): 2201-2203.

    [6] Geiko P P. Nonlinear crystals for optical parametric oscillators pumped by light pulses of near IR lasers; proceedings of the Twelfth Joint International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics, 2006 [C]. International Society for Optics and Photonics.

    [7] Jones R. Parametric oscillation in KTP and KTA at 1064 nm; proceedings of the proceedings-spie the interantional society for optical engineering, 1995 [C]. Spie International Society for Optical.

    [8] Chen Y-F, Chen Y, Tsai S. Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP [J]. Applied Physics B, 2004, 79(2): 207-210.

    [9] Reghunath A, Malhotra P, Kumar Y, et al. Design of a tunable mid-IR OPO source for DIAL detection of trace gases; proceedings of the Lidar Remote Sensing for Environmental Monitoring VII, 2006[C]. International Society for Optics and Photonics.

    [11] Zverev G M, Levchuk E, Pashkov V A, et al. Laser-radiation-induced damage to the surface of lithium niobate and tantalate single crystals [J]. Soviet Journal of Quantum Electronics, 1972, 2(2): 167.

    [12] Myers L E, Eckardt R, Fejer M M, et al. Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3 [J]. Optics Letters, 1996, 21(8): 591-593.

    [13] Richman B A, Aniolek K W, Kulp T J, et al. Continuously tunable, single-longitudinal-mode, pulsed mid-infrared optical parametric oscillator based on periodically poled lithium niobate [J]. J Opt Soc Am B, 2000, 17(7): 1233-1239.

    [14] McEwan K, Terry J. A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO)[J]. Optics Communications, 2000, 182(4-6): 423-432.

    [15] Baudisch M, Hemmer M, Pires H, et al. Performance of MgO: PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power[J]. Optics Letters, 2014, 39(20): 5802-5805.

    [16] Zhang K, Chen F, Pan Q, et al. Theoretical study on thermal characteristic of MgO: PPLN crystal in high power optical parametric oscillator [J]. Optik, 2019, 178: 190-196.

    [17] Koechner W. Solid-State Laser Engineering[M].New York: Springer, 1999.

    [18] Isaenko L I, Yelisseyev A P. Recent studies of nonlinear chalcogenide crystals for the mid-IR[J]. Semiconductor Science Technology, 2016, 31(12): 123001.

    [19] Finsterbusch K, Bayer A, Zacharias H. Tunable, narrow-band picosecond radiation in the mid-infrared by difference frequency mixing in GaSe and CdSe[J]. Applied Physics B, 2004, 79(4): 457-462.

    [20] Roberts D A. Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions[J]. IEEE Journal of Quantum Electronics, 1992, 28(10): 2057-2074.

    [21] Beasley J D. Thermal conductivities of some novel nonlinear optical materials[J]. Applied Optics, 1994, 33(6): 1000-1003.

    [22] Ni Y, Wu H, Mao M, et al. Growth and characterization of mid-far infrared optical material CdSe crystal[J]. Optical Materials Express, 2018, 8(7): 1796-1805.

    [23] Dmitriev V G, Gurzadyan G G, Nikogosyan D N. Handbook of Nonlinear Optical Crystals[M]. Bering: Springer, 1999.

    [25] Chaitanya Kumar S, Schunemann P G, Zawilski K T, et al. Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2 [J]. J Opt Soc Am B, 2016, 33(11): D44-D56.

    [26] Schunemann P G. Quasi-phasematched semiconductors for nonlinear optical frequency conversion[C]. Proceedings of the Conference on Lasers and Electro Optics, 2019.

    [27] Schunemann P G, Pomeranz L A, Magarrell D J. First OPO based on orientation-patterned gallium phosphide (OP-GaP)[C]. Proceedings of the Conference on Lasers and Electro Optics,2015.

    [28] Kieleck C, Hildenbrand A, Eichhorn M, et al. OP-GaAs OPO pumped by 2 μm Q-switched lasers∶Tm; Ho∶silica fiber laser and Ho∶YAG laser; proceedings of the Technologies for Optical Countermeasures VII, 2010[C]. International Society for Optics and Photonics.

    [29] Harris S E. Tunable optical parametric oscillators[J]. Proceedings of the IEEE, 1969, 57(12): 2096-2113.

    [30] Haakestad M W, Arisholm G, Lippert E, et al. High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2[J]. Optics Express, 2008, 16(18): 14263-14273.

    [31] Dergachev A, Armstrong D, Smith A, et al. 3.4 μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho: YLF MOPA system[J]. Optics Express, 2007, 15(22): 14404-14413.

    [32] Petrov V, Rotermund F, Noack F, et al. Femtosecond parametric generation in ZnGeP2[J]. Optics Letters, 1999, 24(6): 414-416.

    [33] Schunemann P G. Improved NLO crystals for mid-IR laser applications; proceedings of the Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications VI, 2007[C]. International Society for Optics and Photonics.

    [34] Haakestad M W, Fonnum H, Lippert E. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2[J]. Optics Express, 2014, 22(7): 8556-8564.

    [35] Qian C-P, Yao B-Q, Zhao B-R, et al. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation[J]. Optics Letters, 2019, 44(3): 715-718.

    [36] Liu G, Chen Y, Yao B, et al. Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals[J]. Applied Physics B, 2019, 125(12): 233.

    [37] Liu G Y, Chen Y, Yao B Q, et al. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 μm[J]. Optics Letters, 2020, 45(8): 2347-2350.

    [38] Cole B, Goldberg L, Chinn S R, et al. Compact and efficient mid-IR OPO source pumped by a passively Q-switched Tm∶YAP laser[J]. Optics Letters, 2018, 43(5): 1099-1102.

    [39] Baudisch M, Hinkelmann M, Wandt D, et al. 2.5-12 μm tunable, 2 μm pumped, ZnGeP2-based OPG/OPA System for the generation of narrowband, μJ-level pulses with sub-20 cm-1 bandwidth; proceedings of the The European Conference on Lasers and Electro-Optics, 2019[C]. Optical Society of America.

    [40] Grafenstein L, Bock M, Ueberschaer D, et al. 5 μm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate[J]. Optics Letters, 2017, 42(19): 3796-3799.

    [41] Schellhorn M, Spindler G, Eichhorn M. Improvement of the beam quality of a high-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator[J]. Optics Letters, 2017, 42(6): 1185-1188.

    [42] Sanchez D, Hemmer M, Baudisch M, et al. 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm[J]. Optica, 2016, 3(2): 147-150.

    [43] Yao J, Mei D, Bai L, et al. BaGa4Se7: a new congruent-melting IR nonlinear optical material[J]. Inorganic chemistry, 2010, 49(20): 9212-9216.

    [44] Guo Y, Li Z, Lei Z, et al. Synthesis, growth of crack-free large-size BaGa4Se7 crystal, and annealing studies[J]. Crystal Growth Design, 2018, 19(2): 1282-1287.

    [45] Yang F, Yao J Y, Xu H Y, et al. High efficiency and high peak power picosecond mid-infrared optical parametric amplifier based on BaGa4Se7 crystal[J]. Optics Letters, 2013, 38(19): 3903-3905.

    [46] Yang F, Yao J Y, Xu H Y, et al. Midinfrared Optical Parametric Amplifier With 6.4-11 μm Range Based on BaGa4Se7[J]. IEEE Photonics Technology Letters, 2015, 27(10): 1100-1103.

    [47] Yuan J H, Li C, Yao B Q, et al. High power, tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.1 μm Ho∶YAG laser[J]. Optics Express, 2016, 24(6): 6083-6087.

    [48] Kostyukova N Y, Boyko A A, Badikov V, et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Optics Letters, 2016, 41(15): 3667-3670.

    [49] Zhao B, Chen Y, Yao B, et al. High-efficiency, tunable 8-9 μm BaGa4Se7 optical parametric oscillator pumped at 2.1 μm[J]. Optical Materials Express, 2018, 8(11): 3332-3337.

    [50] Sun M G, Cao Z S, Yao J Y, et al. Continuous-wave difference-frequency generation based on BaGa4Se7 crystal[J]. Optics Express, 2019, 27(4): 4014-4023.

    [51] Kang M, Deng Y, Yan X, et al. A compact and efficient 4.25 μm BaGa4Se7 optical parametric oscillator[J]. Chinese Optics Letters, 2019, 17(12): 121402.

    [52] He Y, Guo Y, Xu D, et al. High energy and tunable mid-infrared source based on BaGa4Se7 crystal by single-pass difference-frequency generation[J]. Optics Express, 2019, 27(6): 9241-9249.

    [53] Xu W T, Wang Y Y, Xu D G, et al. High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 μm[J]. Applied Physics B, 2017, 123(3): 80.

    [54] Zumsteg F, Bierlein J, Gier T. KxRb1-xTiOPO4: a new nonlinear optical material[J]. Journal of Applied Physics, 1976, 47(11): 4980-4985.

    [55] Laudise R, Cava R J, Caporaso A. Phase relations, solubility and growth of potassium titanyl phosphate, KTP[J]. Journal of Crystal Growth, 1986, 74(2): 275-280.

    [56] Shou-Quan J, Hong-Da N, Jin-Ge T, et al. Hydrothermal growht of KTP crystals in the medium range of temperature and pressure[J]. Journal of Crystal Growth, 1990, 99(1-4): 900-904.

    [57] Bhar G, Chatterjee U, Rudra A, et al. Generation of widely tunable mid-infrared radiation by difference frequency mixing in KTP[J]. Journal of Physics D: Applied Physics, 1997, 30(19): 2693.

    [58] Baravets Y, Honzatko P, Todorov F, et al. Narrowband widely tunable CW mid-infrared generator based on difference frequency generation in periodically poled KTP and KTA crystals[J]. Optical Quantum Electronics, 2016, 48(5): 286.

    [59] Liu S, He J, Huang H, et al. High power orthogonally polarized mid-infrared optical parametric oscillator with KTA crystals[J]. Applied Physics B, 2012, 108(3): 623-627.

    [60] Chen Y, Li Y, Li W, et al. Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier[J]. Optics Communications, 2016, 365: 7-13.

    [61] Liu Q, Liu J, Zhang Z, et al. A high energy 3.75 μm KTA optical parametric oscillator at a critical angle[J]. Laser Physics Letters, 2013, 10(7): 075407.

    [62] Heiner Z, Petrov V, Steinmeyer G, et al. 100-kHz, dual-beam OPA delivering high-quality, 5-cycle angular-dispersion-compensated mid-infrared idler pulses at 3.1 μm[J]. Optics Express, 2018, 26(20): 25793-25804.

    [63] Meng X, Wang Z, Tian W, et al. Watt-level widely tunable femtosecond mid-infrared KTiOAsO4 optical parametric oscillator pumped by a 1.03 μm Yb∶KGW laser[J]. Optics Letters, 2018, 43(4): 943-946.

    [64] Balskus K, Zhang Z, McCracken R A, et al. Mid-infrared 333 MHz frequency comb continuously tunable from 1.95 to 4.0 μm[J]. Optics Letters, 2015, 40(17): 4178-4181.

    [65] Shan-De L, Zhao-Wei W, Bai-Tao Z, et al. Wildly tunable, high-efficiency MgO: PPLN mid-IR optical parametric oscillator pumped by a Yb-fiber laser[J]. Chinese Physics Letters, 2014, 31(2): 024204.

    [66] Ruebel F, Anstett G, L’huillier J. Synchronously pumped mid-infrared optical parametric oscillator with an output power exceeding 1 W at 4.5 μm[J]. Applied Physics B, 2011, 102(4): 751-755.

    [67] Yu Y, Chen X, Zhao J, et al. High-repetition-rate tunable mid-infrared optical parametric oscillator based on MgO∶periodically poled lithium niobate[J]. Optical Engineering, 2013, 53(6): 061604.

    [68] Niu S, Aierken P, Ababaike M, et al. Widely tunable, high-energy, mid-infrared (2.2-4.8 μm) laser based on a multi-grating MgO∶PPLN optical parametric oscillator[J]. Infrared Physics Technology, 2020, 104: 103121.

    [69] Parsa S, Kumar S C, Nandy B, et al. Yb-fiber-pumped, high-beam-quality, idler-resonant mid-infrared picosecond optical parametric oscillator[J]. Optics Express, 2019, 27(18): 25436-25444.

    [70] Murray R, Runcorn T, Guha S, et al. High average power parametric wavelength conversion at 3.31-3.48 μm in MgO∶PPLN[J]. Optics Express, 2017, 25(6): 6421-6430.

    [71] Peng Y, Zhang J, Wang Y. High power, twin-band mid-infrared PPMgLN optical parametric oscillator pumped at 1.679 μm[J]. Optics Letters, 2020, 45(5): 1281-1284.

    [72] Zhang Z, Tan Y, Wang J, et al. Seeded optical parametric oscillator light source for precision spectroscopy[J]. Optics Letters, 2020, 45(4): 1013-1016.

    [73] Zhao J, Cheng P, Xu F, et al. Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on MgO∶PPLN at 3.68 μm[J]. Applied Sciences, 2018, 8(8): 1345.

    [74] Wang T J, Kang Z H, Zhang H Z, et al. Wide-tunable, high-energy AgGaS2 optical parametric oscillator[J]. Optics Express, 2006, 14(26): 13001-13006.

    [75] Fu Y, Midorikawa K, Takahashi E J. A high-energy mid-infrared to THz laser; proceedings of the Frontiers in Optics/Laser Science, Washington, DC, 2018/09/16, 2018[C]. Optical Society of America.

    [76] Migal E A, Potemkin F V, Gordienko V M. Highly efficient optical parametric amplifier tunable from near- to mid-IR for driving extreme nonlinear optics in solids[J]. Optics Letters, 2017, 42(24): 5218-5221.

    [77] Maekawa H, Tominaga K, Podenas D. Generation of 55 fs-mid-infrared pulses with a 300 cm-1-spectral width and μJ-pulse energy[J]. Japanese Journal of Applied Physics, 2002, 41(3B): L329.

    [78] Short R K, Stafsudd O M, Prasad N S, et al. High energy AgGaSe2 optical parametric oscillator operating in 5.7~7 μm region; proceedings of the Nonlinear Optics: Materials, Fundamentals and Applications, 2000[C]. Optical Society of America.

    [79] Iwakuni K, Porat G, Bui T Q, et al. Phase-stabilized 100 mW frequency comb near 10 μm[J]. Applied Physics B, 2018, 124(7): 1-7.

    [80] Meisenheimer S K, FüRST J U, Buse K, et al. Continuous-wave optical parametric oscillation tunable up to an 8 μm wavelength[J]. Optica, 2017, 4: 189-192.

    [81] Imahoko T, Takasago K, Sumiyoshi T, et al. Tunable mid-infrared, high-energy femtosecond laser source for glyco-protein structure analysis[J]. Applied Physics B, 2007, 87(4): 629-634.

    [82] Schade W, Khorsandi A, Wilier U, et al. Remote detection of explosives by MIR laser spectroscopy; proceedings of the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Baltimore, Maryland, 2005/05/23, 2005[C]. Optical Society of America.

    [83] Novák O, Krogen P R, Kroh T, et al. Femtosecond 8.5 μm source based on intrapulse difference-frequency generation of 2.1 μm pulses[J]. Optics Letters, 2018, 43(6): 1335-1338.

    [84] Baudisch M, Beutler M, Gebhardt M, et al. 100 kHz, femtosecond, 4-10 μm tunable, AgGaSe2-based OPA pumped by a CPA Tm: fiber laser system; proceedings of the Advanced Solid State Lasers, 2017[C]. Optical Society of America.

    [85] Metzger B, Pollard B, Rimke I, et al. Single-step sub-200 fs mid-infrared generation from an optical parametric oscillator synchronously pumped by an erbium fiber laser[J]. Optics Letters, 2016, 41(18): 4383-4386.

    [86] Boyko A A, Kostyukova N Y, Marchev G M, et al. Rb∶PPKTP optical parametric oscillator with intracavity difference-frequency generation in AgGaSe2[J]. Optics Letters, 2016, 41(12): 2791-2794.

    [87] Boyko A A, Marchev G M, Petrov V, et al. Intracavity-pumped, cascaded AgGaSe2 optical parametric oscillator tunable from 5.8 to 18 μm[J]. Optics Express, 2015, 23: 33460-33465.

    [88] Beutler M, Rimke I, Büttner E, et al. Difference-frequency generation of ultrashort pulses in the mid-IR using Yb-fiber pump systems and AgGaSe2[J]. Optics Express, 2015, 23(3): 2730-2736.

    [89] Hegenbarth R, Steinmann A, Sarkisov S Y, et al. Milliwatt-level mid-infrared (10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator[J]. Optics Letters, 2012, 37(17): 3513-3515.

    [90] Gerhards M. High energy and narrow bandwidth mid IR nanosecond laser system[J]. Optics Communications, 2004, 241(4): 493-497.

    [91] Qu S, Liang H, Liu K, et al. 9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2[J]. Optics letters, 2019, 44(10): 2422-2425.

    [92] Heiner Z, Wang L, Petrov V, et al. Broadband vibrational sum-frequency generation spectrometer at 100 kHz in the 950-1750 cm-1 spectral range utilizing a LiGaS2 optical parametric amplifier[J]. Optics Express, 2019, 27(11): 15289-15297.

    [93] Penwell S B, Whaley-Mayda L, Tokmakoff A. Single-stage MHz mid-IR OPA using LiGaS2 and a fiber laser pump source[J]. Optics letters, 2018, 43(6): 1363-1366.

    [94] Chen B H, Nagy T, Baum P. Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation[J]. Optics Letters, 2018, 43(8): 1742-1745.

    [95] Morimoto T, Sono N, Miyamoto T, et al. Generation of a carrier-envelope-phase-stable femtosecond pulse at 10 μm by direct down-conversion from a Ti∶sapphire laser pulse[J]. Applied Physics Express, 2017, 10(12): 122701.

    [96] Pupeza I, Sánchez D, Zhang J, et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate[J]. Nature Photonics, 2015, 9(11): 721.

    [97] Pelletier E, Sell A, Leitenstorfer A, et al. Mid-infrared optical parametric amplifier based on a LGSe crystal and pumped at 1.6 μm[J]. Optics Express, 2012, 20(25): 27456-27464.

    [98] Wang S, Dai S, Jia N, et al. Tunable 7-12 μm picosecond optical parametric amplifier based on a LiInSe2 mid-infrared crystal[J]. Optics Letters, 2017, 42(11): 2098-2101.

    [99] Dai S B, Jia N, Chen J K, et al. Picosecond mid-infrared optical parametric amplifier based on LiInSe2 with tenability extending from 3.6 to 4.8 μm[J]. Optics Express, 2017, 25(11): 12860-12866.

    [100] Beutler M, Rimke I, Büttner E, et al. Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources[J]. Optics Letters, 2014, 39(15): 4353-4355.

    [101] Beutler M, Rimke I, Büttner E, et al. Femtosecond mid-IR difference-frequency generation in LiInSe2[J]. Optical Materials Express, 2013, 3(11): 1834-1838.

    [102] Marchev G, Tyazhev A, Vedenyapin V, et al. Nd∶YAG pumped nanosecond optical parametric oscillator based on LiInSe2 with tunability extending from 4.7 to 8.7 μm[J]. Optics Express, 2009, 17(16): 13441-13446.

    [103] Zondy J J, Vedenyapin V, Yelisseyev A, et al. LiInSe2 nanosecond optical parametric oscillator[J]. Optics Letters, 2005, 30(18): 2460-2462.

    [104] Chen Y, Liu G, Yang C, et al. 1 W, 10.1 μm, CdSe optical parametric oscillator with continuous-wave seed injection[J]. Optics Letters, 2020, 45(7): 2119-2122.

    [105] Gaida C, Gebhardt M, Heuermann T, et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation[J]. Light: Science & Applications, 2018, 7(1): 1-8.

    [106] Yoshioka K, Igarashi I, Yoshida S, et al. Subcycle mid-infrared coherent transients at 4 MHz repetition rate applicable to light-wave-driven scanning tunneling microscopy[J]. Optics letters, 2019, 44(21): 5350-5353.

    [107] Chen Y, Yang C, Liu G, et al. 11 μm, high beam quality idler-resonant CdSe optical parametric oscillator with continuous-wave injection-seeded at 2.58 μm[J]. Optics Express, 2020, 28(11): 17056-17063.

    [108] Wang J, Yuan L, Zhang Y, et al. Generation of 320 mW at 10.20 μm based on CdSe long-wave infrared crystal[J]. Journal of Crystal Growth, 2018, 491: 16-19.

    [109] Yuan J, Chen Y, Duan X, et al. CdSe optical parametric oscillator operating at 12.07 μm with 170 mW output[J]. Optics & Laser Technology, 2017, 92: 1-4.

    [110] Yuan J, Duan X, Yao B, et al. Tunable 10-to 11-μm CdSe optical parametric oscillator pumped by a 2.1-μm Ho∶YAG laser[J]. Applied Physics B, 2016, 122(7): 202.

    [111] Zakel A, Wagner G J, Alford W J, et al. High-power, rapidly-tunable dual-band CdSe optical parametric oscillator; proceedings of the Advanced Solid-State Photonics, 2005[C]. Optical Society of America.

    [112] Watson M, O’Connor M, Shepherd D, et al. Synchronously pumped CdSe optical parametric oscillator in the 9-10 μm region[J]. Optics letters, 2003, 28(20): 1957-1959.

    [113] Carrig T, Rawle C B, Mckinnie I T, et al. Dual-band Cr∶ZnSe laser pump-tuned OPOs; proceedings of the Nonlinear Optics: Materials, Fundamentals and Applications, 2002[C]. Optical Society of America.

    [114] Liu K, Liang H, Wang L, et al. Multimicrojoule GaSe-based midinfrared optical parametric amplifier with an ultrabroad idler spectrum covering 4.2-16 μm[J]. Optics letters, 2019, 44(4): 1003-1006.

    [115] Yan D, Xu D, Wang Y, et al. High-repetition-rate, tunable and coherent mid-infrared source based on difference frequency generation from a dual-wavelength 2 μm laser and GaSe crystal[J]. Laser Physics, 2018, 28(12): 126205.

    [116] Ruehl A, Gambetta A, Hartl I, et al. Widely-tunable mid-infrared frequency comb source based on difference frequency generation[J]. Optics letters, 2012, 37(12): 2232-2234.

    [117] Winters D G, Schlup P, Bartels R A. Subpicosecond fiber-based soliton-tuned mid-infrared source in the 9.7-14.9 μm wavelength region[J]. Optics letters, 2010, 35(13): 2179-2181.

    [118] Pomeranz L, McCarthy J, Day R, et al. Efficient, 2-5 μm tunable CdSiP2 optical parametric oscillator pumped by a laser source at 1.57 μm[J]. Optics letters, 2018, 43(1): 130-133.

    [119] Chalus O, Schunemann P, Zawilski K, et al. Optical parametric generation in CdSiP2[J]. Optics letters, 2010, 35(24): 4142-4144.

    [120] Jia Y, Hanka K, Zawilski K T, et al. Continuous-wave whispering-gallery optical parametric oscillator based on CdSiP2[J]. Optics express, 2018, 26(8): 10833-10841.

    [121] O’Donnell C F, Kumar S C, Zawilski K, et al. Critically phase-matched Ti: sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2[J]. Optics letters, 2018, 43(7): 1507-1510.

    [122] Chaitanya Kumar S, Zawilski K T, Schunemann P G, et al. High-repetition-rate, deep-infrared, picosecond optical parametric oscillator based on CdSiP2[J]. Optics Letters, 2017, 42(18): 3606-3609.

    [123] Ramaiahbadarla V, Kumar S C, Estebanmartin A, et al. Ti: sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2[J]. Optics Letters, 2016, 41(8): 1708-1711.

    [124] Kumar S C, Esteban-Martin A, Santana A, et al. Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7 μm based on CdSiP2[J]. Optics letters, 2016, 41(14): 3355-3358.

    [125] Kumar S C, Krauth J, Steinmann A, et al. High-power femtosecond mid-infrared optical parametric oscillator at 7 μm based on CdSiP2[J]. Optics letters, 2015, 40(7): 1398-1401.

    [126] Sánchez D, Hemmer M, Baudisch M, et al. Broadband mid-IR frequency comb with CdSiP2 and AgGaS2 from an Er,Tm∶Ho fiber laser[J]. Optics Letters, 2014, 39(24): 6883-6886.

    [127] Zhang Z, Reid D T, Kumar S C, et al. Femtosecond-laser pumped CdSiP2 optical parametric oscillator producing 100 MHz pulses centered at 6.2 μm[J]. Optics letters, 2013, 38(23): 5110-5113.

    [128] Marchev G, Pirzio F, Piccoli R, et al. Narrow-bandwidth, mid-infrared, seeded optical parametric generation in 90 phase-matched CdSiP2 crystal pumped by diffraction limited 500 ps pulses at 1064 nm[J]. Optics letters, 2012, 37(15): 3219-3221.

    [129] Marchev G, Tyazhev A, Petrov V, et al. Optical parametric generation in CdSiP2 at 6.125 μm pumped by 8 ns long pulses at 1064 nm[J]. Optics Letters, 2012, 37(4): 740-742.

    [130] Kumar S C, Agnesi A, Dallocchio P, et al. Compact, 1.5 mJ, 450 MHz, CdSiP2 picosecond optical parametric oscillator near 6.3 μm[J]. Optics letters, 2011, 36(16): 3236-3238.

    [131] Petrov V, Marchev G, Schunemann P G, et al. Subnanosecond, 1 kHz, temperature-tuned, noncritical mid-infrared optical parametric oscillator based on CdSiP2 crystal pumped at 1064 nm[J]. Optics letters, 2010, 35(8): 1230-1232.

    [132] Schunemann P G, Pomeranz L A, Setzler S D, et al. CW mid-IR OPO based on OP-GaAs[C]. Proceedings of the International Quantum Electronics Conference, 2013.

    [133] Wueppen J, Nyga S, Jungbluth B, et al. 1.95 μm-pumped OP-GaAs optical parametric oscillator with 10.6 μm idler wavelength[J]. Optics Letters, 2016, 41(18): 4225-4228.

    [134] Fu Q, Xu L, Liang S, et al. High-average-power picosecond mid-infrared OP-GaAs OPO[J]. Optics Express, 2020, 28(4): 5741-5748.

    [135] Heckl O H, Bjork B J, Winkler G, et al. Three-photon absorption in optical parametric oscillators based on OP-GaAs[J]. Optics Letters, 2016, 41(22): 5405-5408.

    [136] Clément Q, Melkonian J M, Dherbecourt J B, et al. Longwave infrared, single-frequency, tunable, pulsed optical parametric oscillator based on orientation-patterned GaAs for gas sensing[J]. Optics Letters, 2015, 40(12): 2676-2679.

    [137] Guha S, Barnes J O, Schunemann P G. Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned Gallium Phosphide[J]. Optical Materials Express, 2015, 5(12): 2911-2923.

    [138] Insero G, Clivati C, D’Ambrosio D, et al. Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals[J]. Optics Letters, 2016, 41(21): 5114-5117.

    [139] Fu Q, Xu L, Liang S, et al. High-beam-quality, watt-level, widely tunable, mid-infrared OP-GaAs optical parametric oscillator[J]. Optics Letters, 2019, 44(11): 2744-2747.

    [140] Boyko A A, Schunemann P G, Guha S, et al. Optical parametric oscillator pumped at ~1 μm with intracavity mid-IR difference-frequency generation in OPGaAs[J]. Optical Materials Express, 2018, 8(3): 549-554.

    [141] Xu L, Fu Q, Liang S, et al. Thulium-fiber-laser-pumped, high-peak-power, picosecond, mid-infrared orientation-patterned GaAs optical parametric generator and amplifier[J]. Optics Letters, 2017, 42(19): 4036-4039.

    [142] Gutty F, Grisard A, Larat C, et al. 140 W peak power laser system tunable in the LWIR[J]. Optics Express, 2017, 25(16): 18897-18906.

    [143] Smolski V O, Vasilyev S, Schunemann P G, et al. Cr: ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm[J]. Optics Letters, 2015, 40(12): 2906-2908.

    [144] Vodopyanov K L, Makasyuk I, Schunemann P G. Grating tunable 4-14 μm GaAs optical parametric oscillator pumped at 3 μm[J]. Optics Express, 2014, 22(4): 4131-4136.

    [145] Devi K, Schunemann P G, Ebrahim-Zadeh M. Continuous-wave, multimilliwatt, mid-infrared source tunable across 6.4-7.5 μm based on orientation-patterned GaAs[J]. Optics Letters, 2014, 39(23): 6751-6754.

    [146] Vasilyev S, Schiller S, Nevsky A, et al. Broadly tunable single-frequency cw mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs[J]. Optics Letters, 2008, 33(13): 1413-1415.

    [147] Kuo P S, Vodopyanov K L, Fejer M M, et al. Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs[J]. Optics Letters, 2006, 31(1): 71-73.

    [148] Odonnell C F, Kumar S C, Schunemann P G, et al. Femtosecond optical parametric oscillator continuously tunable across 3.6-8 μm based on orientation-patterned gallium phosphide[J]. Optics Letters, 2019, 44(18): 4570-4573.

    [149] Maidment L, Kara O, Schunemann P G, et al. Long-wave infrared generation from femtosecond and picosecond optical parametric oscillators based on orientation-patterned gallium phosphide[J]. Applied Physics B, 2018, 124(7): 143.

    [150] Ye H, Kumar S C, Wei J, et al. Singly-resonant pulsed optical parametric oscillator based on orientation-patterned gallium phosphide[J]. Optics Letters, 2018, 43(11): 2454-2457.

    [151] Devi K, Padhye A, Schunemann P G, et al. Multimilliwatt, tunable, continuous-wave, mid-infrared generation across 4.6-4.7 μm based on orientation-patterned gallium phosphide[J]. Optics Letters, 2018, 43(10): 2284-2287.

    [152] Sorokin E, Marandi A, Schunemann P G, et al. Efficient half-harmonic generation of three-optical-cycle mid-IR frequency comb around 4 μm using OP-GaP[J]. Optics Express, 2018, 26(8): 9963-9971.

    [153] Sotor J, Martynkien T, Schunemann P G, et al. All-fiber mid-infrared source tunable from 6 to 9 μm based on difference frequency generation in OP-GaP crystal[J]. Optics Express, 2018, 26(9): 11756-11763.

    [154] Ru Q, Loparo Z E, Zhang X, et al. Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3 μm and pumped by an Er-fiber laser[J]. Optics Letters, 2017, 42(22): 4756-4759.

    [155] Maidment L, Schunemann P G, Reid D T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator[J]. Optics Letters, 2016, 41(18): 4261-4264.

    CLP Journals

    [1] HAN Weimin, NI Youbao, WU Haixin, WANG Zhenyou, HUANG Changbao. Growth of a new long-wave infrared material PbGa6Te10[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 172

    CHEN Yi, LIU Gaoyou, WANG Ruixue, YANG Chao, YANG Ke, MI Shuyi, DAI Tongyu, DUAN Xiaoming, YAO Baoquan, JU Youlun, WANG Yuezhu. Research Progress of Nonlinear Crystal Applied in Mid- and Long-wave Infrared Solid-state Laser[J]. Journal of Synthetic Crystals, 2020, 49(8): 1379
    Download Citation