• Nano-Micro Letters
  • Vol. 15, Issue 1, 225 (2023)
Long Pan1,†, Rongxiang Hu1,†, Yuan Zhang1, Dawei Sha1..., Xin Cao1, Zhuoran Li1, Yonggui Zhao2, Jiangxiang Ding3, Yaping Wang1,* and ZhengMing Sun1,**|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, People’s Republic of China
  • 2Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
  • 3School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, 243002 Anhui, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01202-6 Cite this Article
    Long Pan, Rongxiang Hu, Yuan Zhang, Dawei Sha, Xin Cao, Zhuoran Li, Yonggui Zhao, Jiangxiang Ding, Yaping Wang, ZhengMing Sun. Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti3C2Tx MXene[J]. Nano-Micro Letters, 2023, 15(1): 225 Copy Citation Text show less
    References

    [1] J. Lin, X. Zhang, E. Fan, R. Chen, F. Wu et al., Carbon neutrality strategies for sustainable batteries: from structure, recycling, and properties to applications. Energy Environ. Sci. 16(3), 745–791 (2023).

    [2] S. Imtiaz, I.S. Amiinu, Y. Xu, T. Kennedy, Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Mater. Today 48, 241–269 (2021).

    [3] S. Koohi-Fayegh, M.A. Rosen, A review of energy storage types, applications and recent developments. J. Energy Storage 27, 101047 (2020).

    [4] J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13(1), 12 (2020).

    [5] W. Zhang, J. Yin, W. Wang, Z. Bayhan, H.N. Alshareef, Status of rechargeable potassium batteries. Nano Energy 83(83), 105792 (2021).

    [6] X. Min, J. Xiao, M. Fang, W. Wang, Y. Zhao et al., Potassium-ion batteries: outlook on present and future technologies. Energy Environ. Sci. 14(4), 2186–2243 (2021).

    [7] D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu et al., Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett. 13(1), 107 (2021).

    [8] S. Zhang, L. Qiu, Y. Zheng, Q. Shi, T. Zhou et al., Rational design of core-shell ZnTe@N-doped carbon nanowires for high gravimetric and volumetric alkali metal ion storage. Adv. Funct. Mater. 31(3), 2006425 (2021).

    [9] H. Fan, P. Mao, H. Sun, Y. Wang, S.S. Mofarah et al., Recent advances of metal telluride anodes for high-performance lithium/sodium-ion batteries. Mater. Horiz. 9, 524–546 (2021).

    [10] X. Wei, B. Liu, Z. Chen, K. Wu, Y. Liu et al., Recent advances in modulation engineering-enabled metal compounds for potassium-ion storage. Energy Storage Mater. 51, 815–839 (2022).

    [11] D. Sha, Y. You, R. Hu, X. Cao, Y. Wei et al., Comprehensively understanding the role of anion vacancies on K-ion storage: a case study of Se-vacancy-engineered VSe2. Adv. Mater. 35, 2211311 (2023).

    [12] X. Xu, Y. Zhang, H. Sun, J. Zhou, Z. Liu et al., Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage. Adv. Mater. 33(31), 2100272 (2021).

    [13] D. Sha, Y. You, R. Hu, X. Cao, Y. Wei et al., Revealing the evolution of doping anions and their impact on K-ion storage: a case study of Se-doped In2S3. Energy Storage Mater. 58, 165–175 (2023).

    [14] Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), 1905923 (2020).

    [15] G.D. Park, J.-S. Park, J.K. Kim, Y.C. Kang, Recent advances in heterostructured anode materials with multiple anions for advanced alkali-ion batteries. Adv. Energy Mater. 11(27), 2003058 (2021).

    [16] C. Ke, R. Shao, Y. Zhang, Z. Sun, S. Qi et al., Synergistic engineering of heterointerface and architecture in new-type ZnS/Sn heterostructures in situ encapsulated in nitrogen-doped carbon toward high-efficient lithium-ion storage. Adv. Funct. Mater. 32(38), 2205635 (2022).

    [17] Q. Pan, Z. Tong, Y. Su, Y. Zheng, L. Shang et al., Flat-zigzag interface design of chalcogenide heterostructure toward ultralow volume expansion for high-performance potassium storage. Adv. Mater. 34(39), 2203485 (2022).

    [18] Z. Xia, X. Chen, H. Ci, Z. Fan, Y. Yi et al., Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries. J. Energy Chem. 53, 155–162 (2021).

    [19] P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47(19), 7426–7451 (2018).

    [20] A. Khan, J. Azadmanjiri, B. Wu, L. Liping, J. Min, Atomically thin nanosheets confined in 2D heterostructures: metal-ion batteries prospective. Adv. Energy Mater. 11(20), 2100451 (2021).

    [21] M.K. Aslam, M. Xu, A mini-review: MXene composites for sodium/potassium-ion batteries. Nanoscale 12(30), 15993–16007 (2020).

    [22] H. Wang, Z. Cui, S.A. He, J.Q. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano-Micro Lett. 14(1), 189 (2022).

    [23] M. Lu, H. Li, W. Han, J. Chen, W. Shi et al., 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. J. Energy Chem. 31, 148–153 (2019).

    [24] C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng et al., Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 3(1), 29–55 (2020).

    [25] X. Xu, L. Yang, W. Zheng, H. Zhang, F. Wu et al., MXenes with applications in supercapacitors and secondary batteries: a comprehensive review. Mater. Rep. Energy 2(1), 100080 (2022).

    [26] M. Lu, W. Han, H. Li, W. Shi, J. Wang et al., Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity. Energy Storage Mater. 16, 163–168 (2019).

    [27] Y. Wen, M. Wu, M. Zhang, C. Li, G. Shi, Topological design of ultrastrong and highly conductive graphene films. Adv. Mater. 29(41), 1702831 (2017).

    [28] J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020).

    [29] R. Hu, D. Sha, X. Cao, C. Lu, Y. Wei et al., Anchoring metal-organic framework-derived ZnTe@C onto elastic Ti3C2Tx MXene with 0D/2D dual confinement for ultrastable potassium-ion storage. Adv. Energy Mater. 12(47), 2203118 (2022).

    [30] C. Zhang, H. Li, X. Zeng, S. Xi, R. Wang et al., Accelerated diffusion kinetics in ZnTe/CoTe2 heterojunctions for high rate potassium storage. Adv. Energy Mater. 12(41), 2202577 (2022).

    [31] W. Feng, X. Wen, Y. Wang, L. Song, X. Li et al., Interfacial coupling SnSe2/SnSe heterostructures as long cyclic anodes of lithium-ion battery. Adv. Sci. 10(2), 2204671 (2023).

    [32] D. Sha, C. Lu, W. He, J. Ding, H. Zhang et al., Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano 16(2), 2711–2720 (2022).

    [33] X. Zhao, H. Xu, Z. Hui, Y. Sun, C. Yu et al., Electrostatically assembling 2D nanosheets of MXene and MOF-derivatives into 3D hollow frameworks for enhanced lithium storage. Small 15(47), 1904255 (2019).

    [34] S.D. Negedu, R. Tromer, C.C. Gowda, C.F. Woellner, F.E. Olu et al., Two-dimensional cobalt telluride as a piezo-tribogenerator. Nanoscale 14(21), 7788–7797 (2022).

    [35] L. Pan, X.-D. Zhu, X.-M. Xie, Y.-T. Liu, Smart Hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv. Funct. Mater. 25(22), 3341–3350 (2015).

    [36] H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore-shell Fe2N-nanoparticle-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11(1), 56 (2019).

    [37] Y. Li, Q. Zhang, Y. Yuan, H. Liu, C. Yang et al., Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv. Energy Mater. 10(23), 2000717 (2020).

    [38] J. Cao, Z. Sun, J. Li, Y. Zhu, Z. Yuan et al., Microbe-Assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage. ACS Nano 15(2), 3423–3433 (2021).

    [39] K.-T. Chen, S. Chong, L. Yuan, Y.-C. Yang, H.-Y. Tuan, Conversion-alloying dual mechanism anode: nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage. Energy Storage Mater. 39, 239–249 (2021).

    [40] X. Li, J. Li, W. Zhuo, Z. Li, L. Ma et al., In situ monitoring the potassium-ion storage enhancement in iron selenide with ether-based electrolyte. Nano-Micro Lett. 13(1), 179 (2021).

    [41] X. Li, H. Liang, X. Liu, R. Sun, Z. Qin et al., Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries. Chem. Eng. J. 425, 130657 (2021).

    [42] R. Verma, P.N. Didwal, A.-G. Nguyen, C.-J. Park, SnSe nanocomposite chemically-bonded with carbon-coating as an anode material for K-ion batteries with outstanding capacity and cyclability. Chem. Eng. J. 421(1), 129988 (2021).

    [43] S.H. Yang, Y.J. Lee, H. Kang, S.-K. Park, Y.C. Kang, Carbon-coated three-dimensional MXene/iron selenide ball with core-shell structure for high-performance potassium-ion batteries. Nano-Micro Lett. 14(1), 17 (2022).

    [44] W. Luo, Y. Feng, D. Shen, J. Zhou, C. Gao et al., Engineering ion diffusion by CoS@SnS heterojunction for ultrahigh-rate and stable potassium batteries. ACS Appl. Mater. Interfaces 14(14), 16379–16385 (2022).

    [45] Z. Tong, R. Yang, S. Wu, D. Shen, T. Jiao et al., Surface-engineered black niobium oxide@graphene nanosheets for high-performance sodium-/potassium-ion full batteries. Small 15(28), 1901272 (2019).

    [46] Y. Liu, Z. Sun, X. Sun, Y. Lin, K. Tan et al., Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms. Angew. Chem. Int. Ed. 59(6), 2473–2482 (2020).

    [47] C.H. Chang, K.T. Chen, Y.Y. Hsieh, C.B. Chang, H.Y. Tuan, Crystal facet and architecture engineering of metal oxide nanonetwork anodes for high-performance potassium ion batteries and hybrid capacitors. ACS Nano 16(1), 1486–1501 (2022).

    [48] N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14(1), 146 (2022).

    [49] L. Sun, J. Sun, S. Zhai, T. Dong, H. Yang et al., Homologous MXene-derived electrodes for potassium-ion full batteries. Adv. Energy Mater. 12(23), 2200113 (2022).

    Long Pan, Rongxiang Hu, Yuan Zhang, Dawei Sha, Xin Cao, Zhuoran Li, Yonggui Zhao, Jiangxiang Ding, Yaping Wang, ZhengMing Sun. Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti3C2Tx MXene[J]. Nano-Micro Letters, 2023, 15(1): 225
    Download Citation