• Acta Photonica Sinica
  • Vol. 52, Issue 6, 0612001 (2023)
Zhiliang WU1, Nian CAI1,*, Weicheng OU2, Xiaona CHEN1, and Han WANG2
Author Affiliations
  • 1School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • 2School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • show less
    DOI: 10.3788/gzxb20235206.0612001 Cite this Article
    Zhiliang WU, Nian CAI, Weicheng OU, Xiaona CHEN, Han WANG. High-precision Measurement for a Quantum Dot Encoder Based on Triangular-wave Skeleton Extraction of Coding Patterns[J]. Acta Photonica Sinica, 2023, 52(6): 0612001 Copy Citation Text show less
    Displacement measurement principle of quantum dot encoder[31]
    Fig. 1. Displacement measurement principle of quantum dot encoder31
    Signal capture system for the quantum dot encoder
    Fig. 2. Signal capture system for the quantum dot encoder
    Pipeline of the proposed measurement method
    Fig. 3. Pipeline of the proposed measurement method
    Contour detection of the coding pattern
    Fig. 4. Contour detection of the coding pattern
    Skeleton extraction of the coding pattern
    Fig. 5. Skeleton extraction of the coding pattern
    Displacement measurement
    Fig. 6. Displacement measurement
    Radial basis function neural network
    Fig. 7. Radial basis function neural network
    Measurement system of the quantum dot encoder
    Fig. 8. Measurement system of the quantum dot encoder
    Comparisons of different waveform fittings
    Fig. 9. Comparisons of different waveform fittings
    Measurement errors obtained by five methods
    Fig. 10. Measurement errors obtained by five methods
    Equipment and softwareParameters
    CPUAMD Ryzen 7 5800 8-Core 3.40 GHz
    GPUNVIDIA GeForce RTX 3060 12 GB
    Operating systemWindows 10
    OpenCV4.0.1
    Python3.6
    Table 1. Hardware and software environment configurations of the displacement measurement method
    WaveformRMSE/pixelAmplitude/pixel
    Square wave106.2473
    Sine wave37.99171
    Triangular wave38.49207
    Table 2. Comparisons of fitting results via different waveforms
    MethodRMSE/μmMax error/μmVariance/μm2CI
    BPNN11.56221.54336.617[-23.568,6.0183]
    LSTM21.92048.190133.512[-15.499,46.129]
    RBFNN0.5510.9880.183[-1.193,0.885]
    Table 3. Comparisons of error compensation for the quantum dot encoder via different neural networks
    MethodRMSE/μmMax error/μmRep error/μmVariance/μm2CIRunning time/ms
    Pre 3110.16630.1745±8.69541.49[-20.875,18.813]42.13
    Pre+BTVS18.14254.800±33.476135.838[-39.243,16.989]20.17
    Pre+TWSE6.35219.741±0.87014.853[-12.568,2.410]46.17
    Pre+RBFNN3.48816.426±13.3956.336[-7.008,6.668]43.35
    Ours0.5510.988±0.8700.183[-1.193,0.885]24.32
    Table 4. Ablation experiments
    Zhiliang WU, Nian CAI, Weicheng OU, Xiaona CHEN, Han WANG. High-precision Measurement for a Quantum Dot Encoder Based on Triangular-wave Skeleton Extraction of Coding Patterns[J]. Acta Photonica Sinica, 2023, 52(6): 0612001
    Download Citation